An isoreticular class of Metal-Organic-Frameworks based on the **MIL-88** topology

Suzy Surblé,^a Christian Serre,^a Caroline Mellot-Draznieks^b Franck Millange,^a Gérard Férey^{a, c} ^a Institut Lavoisier, UMR CNRS 8637, Université de Versailles Saint-Quentin-en-

Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles cédex, France

^b Royal Institution, , Davy Faraday Research Laboratory, The Royal Institution of Great Britain, 21 Albemarle Street, London W1S 4BS (United Kingdom)

^c Institut Universitaire de France

Supporting information

Quantitative analysis.

MIL-88B: C: 38.6 % N: 1.64 % F: 1.96 % Cr: 16.86 %

MIL-88C: C: 43.4 % Fe: 17.54 % Cl: traces

MIL-88D: C: 54.75 % N: 3.0 % F: 1.29 % Cr: 13.35 %

Phase / Atomic ratio	F/M	C/M	N/M
MIL-88B: Obs	0.32	9.92	0.36
MIL-88B: Calc.	0.33	9.67	0.333
MIL-88C: Obs		12.1	
MIL-88C: Calc.		11.55	
MIL-88D: Obs	0.26	17.7	0.82
MIL-88D: Calc.	0.33	17	

M=Cr (MIL-88B and D); M=Fe (MIL-88C).

N.B. : as in the chromium carboxylate MIL-100, a partial substitution of the fluorine counter anions by hydroxyl groups is probably occuring in MIL-88B and MIL-88D. This would explain the lower fluorine experimental content observed in both cases.

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

Table S1 : Crystal data and structure refinement parameters for MIL-88B, MIL-88C and **MIL-88D** or $Cr_3^{III}OX.\{O_2C-C_6H_4-CO_2\}_3.8H_2O.C_5H_6N, Fe_3^{III}O.\{O_2C-C_{10}H_6 CO_{2}_{3}.[CH_{3}CO_{2}].H_{2}O.nCH_{3}OH$ and $Cr_{3}^{III}OX_{0}_{2}C-C_{12}H_{8}-CO_{2}_{3}.xH_{2}O.yC_{5}H_{6}N$ (X=F, *OH; n~6.6, x~23.75, y~2.46))*

Formula	MIL88B	MIL-88C	MIL-88D
Chemical formula	$Cr_{6}F_{2}O_{42}C_{58}N_{2}H_{68}$	Fe ₆ O _{45.2} C _{89.2} H _{88.8}	$Cr_6F_2O_{71.5}N_{4.92}C_{108.6}$
			H _{124.5}
Molar weight (g.mol ⁻¹)	1812	2218.4	2995.4
Calculated density (g.cm ⁻³)	1.51	1.74	1.43
Crystal system	Hexagonal	Hexagonal	Hexagonal
Space group	<i>P -6 2 c</i> (n°190)	<i>P -6 2 c</i> (n°190)	<i>P -6 2 c</i> (n°190)
<i>a</i> (Å)	11.028 (1)	10.175(1)	12.165(1)
<i>c</i> (Å)	18.972(1)	23.772(2)	27.191(1)
$V(\text{\AA}^3)$	1998.2(3)	2115.2(3)	3485.4(2)
Ζ	1	1	1
Figures of merit	$M_{19}/F_{19}=21/25$	$M_{14}/F_{14}=23/43$	$M_{20}/F_{20}=20/35$
Radiation λ (Cu K _{α})	1.54059, 1.54439	1.54059, 1.54439	1.54059, 1.54439
$\chi = K_{\alpha 2}/K_{\alpha 1}$	0.5	0.5	0.5
Temperature (K)	296	296	296
2θ range (°)	5-60	6-60	5-60
N. reflections	122	153	209
N. independent atoms	15	18	22
N. intensity parameters	37	46	58
N. profile parameters	15	12	16
N. soft distance constraints	36	43	20
R _P	12.0	9.7	10.3
R _{WP}	14.8	13.1	13.8
R _{Bragg}	8.7	10.4	8.3
Isotropic thermal factor	2.0(2)	3.0(2)	3.0(2)
Profile function	Pseudo-Voigt	Pseudo-Voigt	Pseudo-Voigt
Background	Polynomial (6	Polynomial (5	Polynomial (6
	parameters)	parameters)	parameters)
N. of asymmetry parameters	2	2	2
N. of strain parameters	6	4	6
Preferred orientation vector	001	001	001
Preferred orientation	0.20	0.02	0.10
coefficient			

Figure S1a: TGA of MIL-88B under O₂ atmosphere.

Figure S1b: TGA of MIL-88C under O₂ atmosphere.

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2005

Figure S1c: TGA of MIL-88D performed under O2 atmosphere dried a few hours at

room temperature. Bottom (red): after one hour; Top (black): after 3 days. T(°C)

2-Theta - Scale

Figure S2: X-Ray thermodiffractometry of MIL-88B, C, D under air atmosphere. *Experiments were performed in the furnace of a Siemens D-5000 diffractometer in*

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005 the θ - θ mode (λ_{Co}). (range: 6-25° (2 θ); 3s/step = 1.30 h per pattern). Heating rate was of 5°C/min.

Phase / Loss	Solvant loss*	Departure of bound solvant + carboxylate + strongly interacting	
		pyridine** + anion (acetate or	
		HX***)	
MIL-88B: Obs	14 %	59 %	
MIL-88B: Calc.	15 %	60 %	
MIL-88C: Obs	10.0 %	63 %	
MIL-88C: Calc.	11.7	66.65 %	
MIL-88D: Obs (to+1h)	44.8 %	41.5 %	
MIL-88D: Calc.	40.55 %	44.67 %	

Comparison of TGA results and expected losses.

(*): The threshold temperature used for the observed free solvent loss depends on the nature of the solvant: methanol: $100^{\circ}C$ (MIL-88C), H₂O+pyridine: $200^{\circ}C$ (MIL-88B and D).

(**): pyridine in MIL-88B present in the cages is assumed to leave the solid at higher temperature (after 200°C)

(***): X=F, OH

<u>N.B.</u>: The higher discrepency observed for TGA results from MIL-88D comes probably from the rapid departure of the free solvant under air atmosphere. In fact, the X-Ray diffraction pattern was collected six hours after washing the sample in pyridine. Two TGA were performed on MIL-88D after drying one hour at room temperature (TGA n°1) or 72 hours (TGA n°2) show the rapid decrease in solvant weight loss with time. As a consequence, the amount of free solvant deduced from the structure determination is intermediate between the values observed for TGA n°1 and TGA n°2.

A similar behavior for MIL-88B and C is also expected but at a lower scale.

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

Figure S3 : Final Rietveld plots of MIL-88B, MIL-88C and MIL-88D.