Supporting Information for B503371C

An insight into the protonation property of a diiron azadithiolate complex pertinent to the active site of Fe -only hydrogenases

Weibing Dong, ${ }^{a}$ Mei Wang, ${ }^{*}{ }^{a}$ Xiaoyang Liu, ${ }^{a, b}$ Kun Jin, ${ }^{a}$ Guanghua Li, ${ }^{b}$ Fujun Wang, ${ }^{a}$ and Licheng Sun* ${ }^{a, c}$
${ }^{a}$ State Key Laboratory of Fine Chemicals, Dalian University of Technology, Zhongshan Road 158-46, Dalian 116012, P. R. China
${ }^{b}$ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, P. R. China
${ }^{c}$ KTH Chemistry, Organic Chemistry, Royal Institute of Technology, 10044 Stockholm, Sweden

Experimental Section

Instrumentation. Infrared spectra were recorded on a JASCO FT/IR 430 spectrophotometer.
${ }^{1}$ H NMR spectra were collected on a Varian INOVA 400NMR instrument. Mass spectra were performed by electro-spray ionization (ESI) on an HP1100 MSD instrument and TOF-ESI-MS on an HPLC-Q-TOF MS (Micromass) mass spectrometer. Elemental analyses were performed on a THERMOQUEST-FLASH EA 1112 elemental analyzer.

Synthesis of $\left[\left\{\left(\mu-\mathrm{SCH}_{2}\right)_{\mathbf{2}} \mathbf{N}\left(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathrm{NO}_{2}\right)\right\}\left\{\mathbf{F e}(\mathbf{C O})_{\mathbf{2}}\left(\mathrm{PMe}_{3}\right)\right\}_{\mathbf{2}}\right]$ (2). Trimethylphosphine (4.0 $\mathrm{mL}, 1.0 \mathrm{M}$ in THF) was dropped to the toluene solution $(50 \mathrm{~mL})$ of $\mathbf{1}(0.5 \mathrm{~g}, 0.98 \mathrm{mmol})$ under N_{2}. The mixture was stirred at $60^{\circ} \mathrm{C}$ until the reaction was completed (monitored by IR spectra). After removal of solvent in vacuo, the purple brown residue was purified by column chromatography on silicon gel with toluene as eluent. Recrystallization of the crude product from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane ($1 / 5, \mathrm{v} / \mathrm{v}$) gave $\mathbf{2}$ as red brown crystals ($0.45 \mathrm{~g}, 76 \%$). Elemental analysis (\%) calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{2}$: C, 35.78, H, 4.34, N, 4.64; found: C, 35.55, H, 4.25, N, 4.78; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=1.48\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 18 \mathrm{H}\right), 4.20\left(\mathrm{br} \mathrm{s}, \mathrm{SCH}_{2}, 4 \mathrm{H}\right), 6.68(\mathrm{br}$ s, $\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}, 2 \mathrm{H}$), $8.14 \mathrm{ppm}\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}, 2 \mathrm{H}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}\right): \delta$ $=27.19 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{3} \mathrm{CN}\right):$ nu(tilde $)=1985(\mathrm{~m}), 1949(\mathrm{~s}), 1906(\mathrm{~s}) \mathrm{cm}^{-1}(\mathrm{CO})$.
$[\mathbf{2}(\mathrm{FeHFe})]^{+}\left[\mathrm{PF}_{6}\right]^{-}$: Concentrated $\mathrm{HCl}(4.0 \mathrm{~mL}, 12 \mathrm{~m})$ was added dropwise to the solution of $\mathbf{2}$ ($0.5 \mathrm{~g}, 0.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(2 \mathrm{~mL} / 15 \mathrm{~mL})$. The solution turned deep red after stirred for 10 min , to which was added a few drops of saturated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ solution. The red orange solid was filtrated, washed with water and ether successively, and dried in vacuo. The μ-hydride diiron complex $[2(\mathrm{FeHFe})]^{+}\left[\mathrm{PF}_{6}\right]^{-}$was obtained in a yield of $57 \%(0.42 \mathrm{~g})$. Crystals suitable for an X-ray diffraction studies were obtained by slowly diffusion of $\mathrm{Et}_{2} \mathrm{O}$ to the $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 15, \mathrm{v} / \mathrm{v})$ solution of $[\mathbf{2}(\mathrm{FeHFe})]^{+}\left[\mathrm{PF}_{6}\right]^{-}$. Elemental analysis (\%) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{3} \mathrm{~S}_{2}$: C, 28.82, H, 3.63, N, 3.73; found: C, 28.70, H, 3.58, N, 3.82; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=-15.02\left(\mathrm{t}, J_{\mathrm{PH}}=21.7 \mathrm{~Hz}, \mathrm{FeHFe}, 1 \mathrm{H}\right), 1.56\left(\mathrm{~d}, J_{\mathrm{PH}}=10.6 \mathrm{~Hz}\right.$, $\left.\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 18 \mathrm{H}\right), 4.64\left(\mathrm{~m}, \mathrm{SCH}_{2}, 4 \mathrm{H}\right), 7.06\left(\mathrm{~d}, J_{\mathrm{HH}}=9.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}, 2 \mathrm{H}\right), 8.17 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{HH}}\right.$ $\left.=9.2 \mathrm{~Hz}, \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}, 2 \mathrm{H}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CH}_{3} \mathrm{CN}\right): \delta=22.52\left(\mathrm{~s}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $-143.54 \mathrm{ppm}\left(\mathrm{m}, \mathrm{PF}_{6}{ }^{-}\right) ; \operatorname{IR}\left(\mathrm{CH}_{3} \mathrm{CN}\right): \mathrm{nu}(\mathrm{tilde})=2035(\mathrm{~s}), 1995(\mathrm{~s}) \mathrm{cm}^{-1}(\mathrm{CO}) ; \operatorname{ESI}-\mathrm{MS}(\mathrm{m} / \mathrm{z})$: calcd for $\left[\mathrm{M}-\mathrm{PF}_{6}{ }^{-}\right]^{+}: 604.9$; found: 604.9 (100\%).

Synthesis of $[\mathbf{2}(\mathbf{S H})]^{+}[\mathrm{OTf}]^{-}$. The addition of 4 equiv of HOTf to the CHCl_{3} solution (2 mL) of $2(0.2 \mathrm{~g}, 0.33 \mathrm{mmol})$ afforded an orange paste, which was quickly washed with O_{2}-free CHCl_{3} and dried in vacuo. $[2(\mathrm{SH})]^{+}[\mathrm{OTf}]^{-}$was obtained in a yield of ca. $31 \%(77 \mathrm{mg})$, contaminated with a small amount of μ-hydride complex (ca. 20% according to the integrations of the signals in the ${ }^{1} \mathrm{H}$ NMR spectrum). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta=1.50$ $\left(\mathrm{d}, J_{\mathrm{PH}}=14.0 \mathrm{~Hz}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, 18 \mathrm{H}\right), 3.05(\mathrm{~s}, \mu-\mathrm{SH}, 1 \mathrm{H}), 5.39\left(\mathrm{br} \mathrm{s}, \mathrm{SCH}_{2}, 2 \mathrm{H}\right), 6.66\left(\mathrm{br} \mathrm{s}, \mathrm{SCH}_{2}\right.$, 2 H), 7.61 (br s, $\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}, 2 \mathrm{H}$), $8.31 \mathrm{ppm}\left(\mathrm{br} \mathrm{s}, \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{NO}_{2}, 2 \mathrm{H}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CH}_{3} \mathrm{CN}\right): \delta=-1.09 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{CH}_{3} \mathrm{CN}\right):$ nu(tilde) $=2112(\mathrm{~s}), 2075(\mathrm{~s}) \mathrm{cm}^{-1}(\mathrm{CO}) ;$ HR-ESI-MS $(\mathrm{m} / \mathrm{z})$: calcd for $[\mathrm{M}-\mathrm{OTf}]^{+}: 604.9485$; found: 604.9496 (100\%).

Table 1. Crystallographic data and processing parameters for complexes $\mathbf{2}$ and $[\mathbf{2}(\mathrm{FeHFe})]^{+}$

Complex	2	$\left[\mathbf{2}\left(\mathrm{FeHFe}^{2}\right)\right]^{+}$
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{Fe}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{3} \mathrm{~S}_{2}$
M_{w}	604.17	750.2
$T(\mathrm{~K})$	$293(2)$	$293(2)$
Crystal system	Monoclinic	Monoclinic
Space group	$P 2(1) / \mathrm{n}$	$P 2(1) / \mathrm{n}$
$a(\AA)$	$13.248(3)$	$11.3070(6)$
$b(\AA)$	$14.676(3)$	$14.1755(5)$
$c(\AA)$	$15.028(3)$	$18.9123(9)$
$\alpha\left({ }^{\circ}\right)$	$64.96(3)$	90.00
$\beta\left({ }^{\circ}\right)$	$82.40(3)$	$104.846(3)$
$\gamma\left({ }^{(}\right)$	$82.83(3)$	90.00
$V\left(\AA^{3}\right)$	$2616.4(9)$	$2930.1(2)$
Z	4	4
$\rho_{\text {calc }}\left(\mathrm{g}\right.$ cm $\left.{ }^{-3}\right)$	1.534	1.700
$F(000)$	1240	1520
Crystal size $\left(\mathrm{mm}{ }^{3}\right)$	$0.25 \times 0.20 \times 0.20$	$0.25 \times 0.20 \times 0.20$
$\theta_{\text {min } / \text { max }}\left({ }^{(}\right)$	$3.0 / 27.46$	$1.82 / 28.28$
Reflns collected $/$ unique	$11823 / 7847$	$7212 / 4388$
Parameters refined	577	356
Goodness-of-fit on F^{2}	1.061	0.990
Final $R 1[I>\sigma(I)]$	0.0485	0.0531
Final $w R 2$	0.1174	0.1382
Residual electron density $\left(\mathrm{e} \AA^{-3}\right)$	$0.680,-0.401$	$1.536,-0.944$

Table 2. Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for complex 2

Bond lengths		Bond angles	
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.5671(10)$	$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$55.48(3)$
$\mathrm{Fe}(1)-\mathrm{S}(1)$	$2.2633(11)$	$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$55.38(3)$
$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.2679(14)$	$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$55.56(4)$
$\mathrm{Fe}(2)-\mathrm{S}(1)$	$2.2606(12)$	$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$55.44(4)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.2644(12)$	$\mathrm{Fe}(2)-\mathrm{S}(1)-\mathrm{Fe}(1)$	$69.15(4)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.432(5)$	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$114.81(5)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.423(5)$	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$112.22(4)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.389(5)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(13)$	$121.9(3)$
$\mathrm{Fe}(1)-\mathrm{P}(1)$	$2.2124(15)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(12)$	$113.6(3)$
$\mathrm{Fe}(2)-\mathrm{P}(2)$	$2.2427(12)$	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(13)$	$122.2(3)$
$\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$2.5280(14)$	$\mathrm{Fe}(3)-\mathrm{S}(4)-\mathrm{Fe}(4)$	$67.31(5)$
$\mathrm{Fe}(3)-\mathrm{S}(3)$	$2.2706(14)$	$\mathrm{Fe}(3)-\mathrm{S}(3)-\mathrm{Fe}(4)$	$67.66(5)$
$\mathrm{Fe}(3)-\mathrm{S}(4)$	$2.2705(13)$	$\mathrm{P}(3)-\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$116.16(5)$
$\mathrm{Fe}(4)-\mathrm{S}(3)$	$2.2704(13)$	$\mathrm{P}(4)-\mathrm{Fe}(4)-\mathrm{Fe}(3)$	$151.51(5)$
$\mathrm{Fe}(4)-\mathrm{S}(4)$	$2.2911(14)$	$\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(30)$	$120.3(3)$
$\mathrm{N}(3)-\mathrm{C}(29)$	$1.450(5)$	$\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(29)$	$122.6(4)$
$\mathrm{N}(3)-\mathrm{C}(30)$	$1.430(5)$	$\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(29)$	$114.6(3)$
$\mathrm{N}(3)-\mathrm{C}(31)$	$1.393(5)$		
$\mathrm{Fe}(3)-\mathrm{P}(3)$	$2.2138(14)$		
$\mathrm{Fe}(4)-\mathrm{P}(4)$	$2.2324(16)$		

Table 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complex $[\mathbf{2}(\mathrm{FeHFe})]^{+}\left[\mathrm{PF}_{6}\right]^{-}$

Bond lengths	Bone angles		
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$2.5879(8)$	$\mathrm{Fe}(2)-\mathrm{Fe}(1)-\mathrm{H}(1)$	$42.9(15)$
$\mathrm{Fe}(1)-\mathrm{H}(1)$	$1.72(5)$	$\mathrm{Fe}(1)-\mathrm{Fe}(2)-\mathrm{H}(1)$	$41.5(16)$
$\mathrm{Fe}(2)-\mathrm{H}(1)$	$1.77(5)$	$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$54.90(3)$
$\mathrm{Fe}(1)-\mathrm{S}(1)$	$2.2845(12)$	$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{Fe}(2)$	$55.52(3)$
$\mathrm{Fe}(1)-\mathrm{S}(2)$	$2.2614(11)$	$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$54.95(3)$
$\mathrm{Fe}(2)-\mathrm{S}(2)$	$2.2772(13)$	$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$55.71(3)$
$\mathrm{Fe}(2)-\mathrm{S}(1)$	$2.2622(12)$	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{Fe}(1)$	$111.50(4)$
$\mathrm{Fe}(1)-\mathrm{C}(1)$	$1.784(5)$	$\mathrm{P}(1)-\mathrm{Fe}(1)-\mathrm{H}(1)$	$79.8(15)$
$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1.795(5)$	$\mathrm{S}(2)-\mathrm{Fe}(1)-\mathrm{H}(1)$	$79.7(15)$
$\mathrm{Fe}(1)-\mathrm{P}(1)$	$2.2428(12)$	$\mathrm{S}(1)-\mathrm{Fe}(1)-\mathrm{H}(1)$	$88.5(15)$
$\mathrm{Fe}(2)-\mathrm{C}(3)$	$1.793(5)$	$\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{H}(1)$	$81.0(15)$
$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1.785(4)$	$\mathrm{C}(3)-\mathrm{Fe}(2)-\mathrm{H}(1)$	$174.1(15)$
$\mathrm{Fe}(2)-\mathrm{P}(2)$	$2.2551(13)$	$\mathrm{P}(2)-\mathrm{Fe}(2)-\mathrm{H}(1)$	$89.8(15)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.434(6)$	$\mathrm{S}(1)-\mathrm{Fe}(2)-\mathrm{H}(1)$	$88.1(15)$
$\mathrm{N}(1)-\mathrm{C}(11)$	$1.441(7)$	$\mathrm{S}(2)-\mathrm{Fe}(2)-\mathrm{H}(1)$	$78.4(16)$
$\mathrm{N}(1)-\mathrm{C}(13)$	$1.382(6)$	$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(12)$	$124.2(4)$
		$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(11)$	$121.4(4)$
		$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(12)$	$114.3(4)$

