
Electronic Supplementary Information for "Porphyrin Dimers Bridged by a Platinum-diacetylide Unit"

Yi-Jen Chen,^a Szu-Shuo Chen,^a Shang-Shih Lo,^a Teng-Hui Huang,^a Chen-Chang Wu,^a Gene-Hsiang Lee,^b Shie-Ming Peng^b and Chen-Yu Yeh^{*a} ^aDepartment of Chemistry, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 402, Taiwan ^bDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan

cyyeh@dragon.nchu.edu.tw

Ni₂1: To a solution of compound Ni4 (28 mg, 0.03 mmol) in Et₂NH (5 mL) under N₂ was added *trans*-Pt(PEt₃)₂Cl₂ (7.5 mg, 0.015 mmol). The mixture was heated at 60 °C for 6 hr. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using CH₂Cl₂:Hexanes = 1:7 as the eluent. The solvent was removed under reduced pressure to give a purple solid (23 mg, 68%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.64 (d, *J* = 4.4 Hz, 4H), 8.76 (d, *J* = 4.4 Hz, 4H), 8.68 (s, 8H), 7.86 (d, *J* = 1.6 Hz, 8H), 7.83 (d, *J* = 1.6 Hz, 4H), 7.70 (t, *J* = 1.6 Hz, 2H), 2.41-2.38 (m, 12H), 1.48 (s, 72H), 1.45 (s, 36H), 1.46-1.38 (m, 18H); UV/Vis (CH₂Cl₂) $\lambda_{\rm max}/{\rm nm}$ (log ε): 449 (5.54), 552 (4.44), 595 (4.68); MS(ESI) *m/z* 2338, calculated for C₁₄₀H₁₇₂N₈P₂PtNi₂ 2338.

Zn₂1: Employing a procedure similar to that for Ni₂1 to yield 64% of the product. ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.77 (d, *J* = 4.4 Hz, 4H), 8.95 (d, *J* = 4.4 Hz, 4H), 8.87 (s, 8H), 8.06 (d, *J* = 1.6 Hz, 8H), 8.03 (d, *J* = 1.6 Hz, 4H), 7.78 (t, *J* = 1.6 Hz, 4H), 7.75 (t, *J* = 1.6 Hz, 2H), 2.41-2.36 (m, 12H), 1.53 (s, 72H), 1.50 (s, 36H), 1.36-1.28 (m, 18H); UV/Vis (CH₂Cl₂) $\lambda_{\rm max}$ /nm (log ε): 444 (5.76), 574 (4.27), 616 (4.62); MS(FAB) *m/z* 2351 (M+H⁺) calculated for C₁₄₀H₁₇₀N₈P₂PtZn₂ 2350.

Zn₂**2**: To a solution of compound Zn**4** (31 mg, 0.032 mmol) in a mixture of THF (4 mL) and NEt₃ (0.4 mL) under air was added CuI (0.6 mg, 0.003 mmol). The mixture was stirred at room temperature for 1 hr. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using CH₂Cl₂:Hexanes = 1:5 as the eluent. The solvent was removed under reduced pressure to give the product (20 mg, 66%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 10.04 (d, *J* = 4.4 Hz, 4H), 9.13 (d, *J* = 4.4 Hz, 4H), 8.93 (s, 8H), 8.12 (s, 8H), 8.05 (s, 4H), 7.82 (t, *J* = 0.8 Hz, 4H), 7.78 (t, *J* = 0.8 Hz, 2H), 1.54 (s, 72H), 1.52 (s, 36H); UV/Vis (CH₂Cl₂) $\lambda_{\rm max}/{\rm nm}$ (log ε): 450 (5.54), 481 (5.47), 565 (4.49), 678 (4.98); MS(ESI) *m/z* 1922 calculated for C₁₂₈H₁₄₂N₈Zn₂ 1922.

Ni₂**2**: A solution of Zn₂**2** (50 mg, 0.025 mmol) in CH₂Cl₂ (100 mL) was washed with aqueous HCl (10%, 100 mL) solution and then with aqueous NaHCO₃ solution. The organic layer was dried with Ns₂SO₄ and the solvent was evaporated under reduced pressure. The solid was dissolved in DMF (20 mL). After addition of Ni(OAc)₂ · 4H₂O (125 mg, 0.50 mmol), the mixture was refluxed for 2 hr. The solution was concentrated, and the crude product was precipitated by addition of water and was then filtered. Chromatography on silica gel eluting with CH₂Cl₂:Hexanes = 1:5 afforded the product (43 mg, 90%). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 9.71 (d, *J* = 4.8 Hz, 4H), 8.91 (d, *J* = 4.8 Hz, 4H), 8.72 (s, 8H), 7.87 (d, *J* = 1.6 Hz, 8H), 7.83 (d, *J* = 1.6 Hz, 4H), 7.73 (t, *J* = 1.6 Hz, 4H), 7.69 (t, *J* = 1.6 Hz, 2H), 1.48 (s, 72H), 1.45 (s, 36H); UV/Vis (CH₂Cl₂) $\lambda_{\rm max}$ /nm (log ε): 448 (5.22), 472 (5.22), 549 (4.38), 634 (4.67); MS(ESI) *m/z* 1908 calculated for C₁₂₈H₁₄₂N₈Ni₂ 1908.

Ni5: To a solution of compound Zn4 (20 mg, 0.02 mmol) in Et₂NH (5 mL) under N₂ was added *trans*-Pt(PEt₃)₂Cl₂ (20 mg, 0.039 mmol). The mixture was heated at 60 °C for 30 min, after which trimethylsilylacetylene (50 μ L, 0.35 mmol) was added. The mixture was heated at 60 °C for further 30 min. After evaporation of the solvent under reduced pressure, the residue was purified by column chromatography on silica gel using CH₂Cl₂:Hexanes = 1:6 as the eluent. The solvent was removed under reduced pressure to give the product in 65% yield. ¹H NMR (CDCl₃, 400 MHz) : $\delta_{\rm H}$ 9.50 (d, *J*

= 4.8 Hz, 2H), 8.70 (d, J = 4.8 Hz, 2H), 8.65 (s, 4H), 7.82 (d, J =1.6 Hz, 4H), 7.81 (d, J =1.6 Hz, 2H), 7.69 (d, J =1.6 Hz, 2H), 7.66 (d, J =1.6 Hz, 1H), 2.26 – 2.18 (m, 12H), 1.46 (s, 36H), 1.44 (s, 18H), 1.31–1.24 (m, 18H), 0.13 (s, 9H); UV-vis (CH₂Cl₂): λ_{max} /nm (log ε): 442 (5.52), 552 (4.28), 588 (4.39); MS (FAB) : m/z 1483 (M+H⁺), calcd for C₈₁H₁₁₀N₄NiP₂PtSi 1482.

Zn**5:** Employing a procedure similar to that for Ni**5** to yield 60% of the product. ¹H NMR (CDCl₃, 400 MHz) : $\delta_{\rm H}$ 9.80 (d, *J* = 4.4 Hz, 2H), 8.93 (d, *J* = 4.4 Hz, 2H), 8.86 (s, 4H), 8.28 (d, *J* = 1.6 Hz, 4H), 8.04 (d, *J* = 1.6 Hz, 2H), 7.78 (d, *J* = 1.6 Hz, 2H), 7.75 (d, *J* = 1.6 Hz, 1H), 2.42 – 2.22 (m, 12H), 1.54 (s, 36H), 1.50 (s, 18H), 1.42–1.28 (m, 18H), 0.17 (s,9H); UV-vis (CH₂Cl₂): λ_{max}/nm (log ε): 446 (5.60), 576 (4.10), 618 (4.52) ; MS (FAB) : *m/z* 1489 (M+H⁺), calcd for C₈₁H₁₁₀N₄P₂PtSiZn 1488.

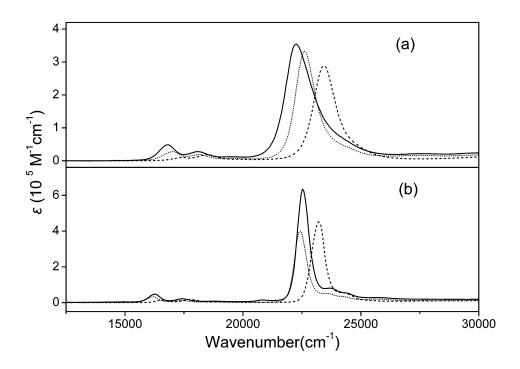
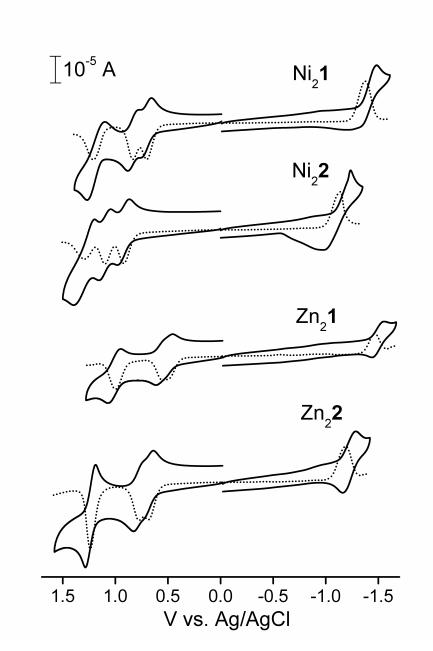
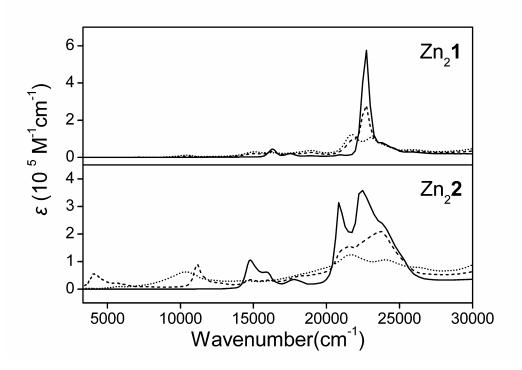




Figure S1. Absorption spectra of (a) Ni_21 (solid), Ni3 (dash), and Ni5 (dot), and (b) Zn_21 (solid), Zn3 (dash), Zn5 (dot) in CH_2Cl_2 .

Fig. S2 The cyclic voltammograms (solid) and differential pulse voltammograms (dot) of Ni_21 , Ni_22 , Zn_21 , and Zn_22 in CH_2Cl_2 containg 0.1 M TBAPF₆.

Fig. S3 The absorption spectra of (a) Zn_21 (solid), Zn_21^+ (dash), and Zn_21^{2+} (dot), and (b) Zn_22 (solid), Zn_22^+ (dash), and Zn_22^{2+} (dot) in CH₂Cl₂. The mono- and dications were generated *in situ* by reacting the neutral molecules with 1 and 2 eq [(*p*-BrC₆H₄)₃N][SbCl₆], respectively. In the case of Zn_21 , the solution could contain three species Zn_21 , Zn_21^+ , and Zn_21^{2+} in the presence of 1 eq [(*p*-BrC₆H₄)₃N][SbCl₆] since the potential separation for the first and second oxidations is small ($\Delta E = 60$ mV).