Synthon evolution and unit cell evolution during crystallisation. A study of symmetry-independent molecules (Z'>1) in crystals of some hydroxy compounds

Dinabandhu Das,^{*a,c*} Rahul Banerjee,^{*a*} Raju Mondal,^{*b*} Judith A. K. Howard,^{*b*} Roland Boese^{*c*} and Gautam R. Desiraju^{**a*}

^{*a*} School of Chemistry, University of Hyderabad, Hyderabad 500 046, India. *E-mail:* gautam_desiraju@yahoo.com

^b Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England, *E-mail: j.a.k.howard@durham.ac.uk*

^c Institute Für Anorganische Chemie, Universität Duisburg – Essen, Essen 45117, Germany. *E-mail: roland.boese@uni-essen.de*

> Supplementary Material (ESI) (17 pages)

Fig.1 ORTEP diagram of pentafluorophenol (1-L).

Fig.2 ORTEP diagram of pentafluorophenol (1-H)

Fig.3 ORTEP diagram of *trans*-1,4-bis(phenylethynyl)cyclohexane-1,4-diol (2-L).

Fig.4 ORTEP diagram of *trans*-1,4-bis(phenylethynyl)cyclohexane-1,4-diol (2-H).

Fig. 5 High Z' form 2-H of *trans*-1,4-bis(phenylethynyl)cyclohexane-1,4-diol. Notice the $(O-H\cdots O)_4$ square synthon and the 4.8^2 network.

Fig. 6 Conformational variations in the symmetry independent molecules in 2-L and 2-H.

Crystallisation of polymorphs

Low Z' form 1-L: Semi-solid pentafluorophenol was liquefied by warming, and then filled in a 0.3 mm. diameter quartz capillary and sealed by flame sealing. The filled capillary was mounted on the goniometer and cooled to 261K. The solid which resulted was melted at 303K by slowly increasing the temperature. The mass was then cooled down to 283K and this resulted in solidification. The capillary surface was gently pressed by hand; this treatment increases both the temperature and the pressure within the capillary. This is sufficient to melt the solid. Cooling then to 277K resulted in a crystal, which was used for data collection. Data was, however, collected at 269K.

High Z' form **1-H**: Pentafluorophenol and pentafluoroaniline were mixed in 1:1 ratio, and the procedure above was repeated except that the various temperatures in the heat-cool cycles were slightly different. The liquid inside the capillary was initially solidified at 301K. It was then melted at 298K and crystals (which were shown in the X-ray analysis to be **1-H**) were finally grown at 294K. Data were collected at 292K.

The dimorphs of **2**, namely **2-L** ($P\overline{1}$, Z'=2) and **2-H** ($P\overline{1}$, Z'=8) were obtained concomitantly from acetone in the University of Durham, and large crystals of **2-H** suitable for neutron diffraction analysis were also obtained in this experiment. However, crystallization of the same synthetic sample in Hyderabad gave only **2-L**. The higher Z' polymorph **2-H** could never be obtained despite using more than five solvents and different crystallization conditions, and unit cells for approximately 25 crystals from different batches were determined: all the crystals were found to be **2-L**. However, **2-H** was obtained in Hyderabad by melt cooling. Approximately 4 mg of **2-**L were heated in the hot bench attached to the Kofler hot stage microscope and melting occurred normally at 456K. When the melt was cooled at the rate of 5°C min⁻ ¹ crystallisation was observed at 369K. A single crystal from the cooled melt was studied on the diffractometer and found to be the high Z' polymorph **2-H**. IR and NMR data of the melt confirms that there was no solid-state reaction or decomposition during heating. Once this metastable polymorph (**2-H**) crystallises it remains as such for a sufficiently long time.

Thermal analysis for compound 2

Thermochemical data provides valuable information about the stability of a polymorph and the interconversion of one polymorph into another. Since crystals of **2-H** and **2-L** were obtained concomitantly from acetone we tried to understand the stability of these two polymorphs via DSC (Mettler Toledo Star) and HSM experiments.

DSC

A Mettler Toledo Star Differential Scanning Calorimeter was used. N₂ was used as the inert gas to flush through the DSC furnace (purge rate 150ml/min) and this prevents condensation. Samples were analyzed using closed aluminum pans at a heating rate of 5° C min⁻¹. When crystals of **2-L** were heated, DSC showed that melting occurs normally at 456K (fig. 7). When the melt was cooled, a crystallisation exotherm was observed at 389K (fig 8). When the cooled melt was reheated, a solid state phase transformation was observed at 389K (fig 9). A single crystal from the cooled melt was studied on the diffractometer and found to be the high Z' polymorph **2-H**.

Fig. 7. Melting endotherm of the low Z' polymorph 2-L.

Fig 8 Crystallisation exotherm of the high Z' polymorph **2-H** from the melt obtained by heating the low Z' polymorph **2-L** of compound **2** to its melting temperature of 456K. Note that the crystallisation occurs at 389K.

Fig 9. Exotherm showing the phase transformation $2-H\rightarrow 2-L$ at 389K. The 2-H material was obtained by melt cooling as indicated in Fig. 8.

Hot stage microscopy, HSM, for compound 2

A Kofler hot stage microscope (Wagner and Munz) was used. The temperature and heating rate were monitored by a digital thermometer. Pictures were taken by a digital camera attached to the microscope and processed with the Motic software. Samples were loaded on a glass slide, placed on the hot bench and heated at a rate of 5° C min⁻¹. The figures below represent the full heating and cooling cycles sequentially. The numbers refer to the temperature in °C.

30

120

176

180

183.6

182

184

183

95.5

181

182

Thermal analysis for compound 1

The sample was cooled from room temperature to 223K. DSC scans were then recorded during heating from 223K to 323K and then during cooling from 323K to 223K. These traces show no evidence of Form **1-H**. However, there appears to be a third (enantiotropic) polymorph with a melting point around 270K.

Fig 10 Melting endotherm (270K, 287K) and crystallisation exotherm (273K, 296K) of pentafluorophenol.

Fig 11 Melting endotherm (306K) and crystallisation exotherm (309K, 288K) of pentafluoroaniline.

Fig 12 DSC traces of the 1:1 mixture of pentafluorophenol and pentafluoroaniline.

Table 1. Lattice energy of polymorphs with different Z'. Compounds were chosen where the synthon or 1D structures are similar in the polymorphs. The Dreiding 2.21 force field was used to calculate the energy (SP = single point, GO = geometry optimized).

Sl. No.	Refcode	Z	Z	Space group	Lattice ener	gy (kJ mol ⁻¹)
					SP energy	GO energy
1	BOCPRO	1	4	$P2_{1}2_{1}2_{1}$	-181.09	-198.42
	BOCPRO01	4	8	<i>P</i> 2 ₁	-177.91	-191.22
2	CBMZPN10	1	4	PĪ	-168.15	-171.31
	CBMZPN11	4	8	$P2_{1}/c$	-157.72	-160.99
3	CYACAC	2	4	$P2_{1}/c$	-78.03	-86.57
	CYACAC01	3	12	$P\overline{1}$	-62.58	-80.20
4	DETBAA02	0.5	4	<i>C</i> 2/ <i>c</i>	-168.74	-174.10
	DETBAA01	1	18	$R\overline{3}$	-151.41	-154.13
	DETBAA06	2	18	<i>R</i> 3	-150.28	-152.50
	DETBAA03	4	8	<i>P</i> 2 ₁	-152.87	-160.24
5	FACRIK	1	4	$P2_1/a$	-66.89	-136.17
	FACRIK08	4	8	<i>P</i> 2 ₁	-51.40	-135.50
6	FAKROY01	2	8	Сс	-84.22	-98.58
	FAKROY	4	4	<i>P</i> 1	-61.45	-89.37
7	HUKHUQ01	2	8	$P2_{1}/c$	-218.72	-223.66
	HUKHUQ	6	24	$P2_{1}/n$	-211.48	-213.44
8	MELXEG01	2	8	$P2_{1}2_{1}2_{1}$	-193.02	-194.48
	MELXEG	3	6	<i>P</i> 2 ₁	-190.42	-192.22
9	MHNPRY	1	4	$P2_{1}2_{1}2_{1}$	-193.94	-201.31
	MHNPRY01	3	12	$P2_{1}2_{1}2_{1}$	-187.24	-196.49
10	THIOUR01	0.5	4	Pnma	-69.11	-74.72
	THIOUR11	1	4	$P2_1ma$	-71.99	-75.31
	THIOUR19	1.5	12	Pbnm	-67.77	-71.99
	THIOUR05	4.5	36	Pbnm	-64.05	-70.07
11	UHENUQ01	3	24	Сс	-119.39	-121.98
	UHENUQ	6	12	$P\overline{1}$	-116.92	-120.03
12	BENZIL	0.5	3	<i>P</i> 3 ₁ 2 ₁	-165.47	-168.28
	BENZIL03	3	6	<i>P</i> 2 ₁	-167.02	-168.95

Sl. No.	Refcode	Z	Z	Space group	Lattice energy	r (kJ mol ⁻¹)
					SP energy	GO energy
13	PULHUZ	2	8	Сс	-253.13	-255.43
	PULHUZ01	4	4	<i>P</i> 1	-253.34	-255.60
14	CLEOZP01	1	9	R3	-240.18	-294.76
	CLEOZP10	3	3	<i>P</i> 1	-246.69	-264.10
15	FABFUJ	1	4	<i>P</i> 2 ₁ 2 ₁ 2 ₁	-112.32	-133.67
	FABFUJ01	2	8	P2 ₁ 2 ₁ 2 ₁	-131.62	-143.97
	FABFUJ02	3	12	$P2_{1}/c$	-126.94	-130.08
16	TAHLET20	2	8	P2c	-133.44	-139.75
	TAHLET21	4	8	$P2_{1}/c$	-151.23	-154.85
17	ZZZVTY12	1	6	$P\overline{3}$	-139.54	-148.67

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

The validation of the force field was done by considering the unit cell parameters before and after minimization. Only those cases were considered where the variation of each of the cell parameters in all polymorphs was less than 5%. This procedure removed one of the 18 sets of compounds (Ref. Code: FAKRIS, FAKRIS01) obtained in the CSD searches, leaving 17 sets of compounds. These calculations are shown in the next table.

Communications	hemistry 2005
for Chemical	l Society of C
(ESI)	Roya
Material	is © The
Supplementary	This journal

	60	90	06	85.69	72.84	06	90	120	120	06	90	90	90	90.16	06	90	90	90	90	90	90	06	06	90
ation)	06	117.30	93.19	86.27	83.80	109.78	8728	06	06	90.05	99.62	91.33	100.20	78.68	95.51	109.13	06	98.97	06	06	06	06	06	06
fter minimiz	06	06	06	84.12	85.26	06	06	06	06	06	06	06	06	73.84	06	06	06	06	06	06	06	06	06	06
barameters (a	6.562	15.509	13.640	22.547	9.835	14.110	9.674	6.861	6.826	6.625	6.365	6.741	7.021	16.306	36.269	38.373	34.882	26.516	8.759	14.505	5.590	5.633	24.159	72.737
Cell I	14.703	16.514	11.003	20.324	7.828	7.591	14.674	26.510	26.410	21.733	11.174	14.794	7.027	7.004	9.561	9.617	10.483	10.054	11.596	19.249	7.957	8.222	7.216	7.164
	16.773	14.480	7.531	5.210	5.478	11.984	6.689	26.510	26.410	12.387	8.061	12.039	29.663	6.822	9.524	28.359	9.988	10.566	18.223	20.659	6.959	7.196	5.456	5.561
	06	90	06	85.19	69.77	06	06	120	120	06	60	60	06	89.92	06	06	60	60	60	60	06	06	06	60
zation)	06	117.84	92.86	88.01	84.89	108.92	89.14	60	06	90.92	99.44	90.49	104.69	76.71	95.63	109.41	06	99.20	06	06	90	90	06	60
efore minimi	90	06	06	84.12	86.24	90	90	90	90	60	90	90	90	75.69	06	06	06	06	06	60	06	06	06	60
arameters (b	6.664	15.502	13.912	22.245	9.936	13.758	9.81	6.828	6.828	6.788	6.128	6.651	7.281	15.194	36.087	38.379	34.977	26.487	8.560	14.384	5.520	5.474	24.788	76.867
Cell p	14.490	16.600	11.156	20.574	7.793	7.761	14.162	26.921	26.800	22.083	11.712	14.995	7.075	7.281	9.490	9.579	10.485	10.119	11.810	19.262	8.537	8.536	7.138	7.545
	16.968	14.667	7.537	5.170	5.536	11.629	7.120	26.921	26.800	12.585	8.193	11.875	29.574	7.075	9.475	28.386	10.058	10.555	18.140	20.266	7.655	7.487	5.503	5.467
Refcode	BOCPRO	BOCPR001	CBMZPN10	CBMZPN11	CYACAC	CYACAC01	DETBAA02	DETBAA01	DETBAA06	DETBAA03	FACRIK	FACRIK08	FAKROY01	FAKROY	HUKHUQ01	HUKHUQ	MELXEG01	MELXEG	MHNPRY	MHNPRY01	THIOUR01	THIOUR11	THIOUR19	THIOUR05

ESI) for Chemical Communications	Royal Society of Chemistry 2005
Supplementary Material (This journal is © The]

-	1		1	1	1		1		-		1		1	1		1	
60	118.48	119.99	60	60	90.12	120	108.90	60	60	60	60	60	120	92.89	103.8	72.40	90
117.03	93.48	90.03	86.98	103.83	100.74	90	110.23	90	06	102.55	105.10	104.33	60	96.97	94.13	69.99	76.14
90	95.43	89.93	90	90	99.78	60	108.08	06	90	06	90	90	90	114.03	100.54	69.11	90
23.680	18.815	13.651	13.515	22.839	22.894	10.176	10.260	7.298	14.381	22.289	26.769-	26.831	13.603	13.733	13.436	9.714	17.134
7.196	13.864	8.385	8.398	11.766	8.379	17.018	10.518	8.817	8.439	8.774	6.168	6.051	13.901	13.060	20.454	9.658	7.534
40.844	13.760	8.385	14.410	11.731	8.327	17.018	10.575	13.131	13.545	13.290	19.165	18.802	13.901	13.607	14.013	9.155	24.954
90	119.43	120	90	90	06	120	108.9	60	90	06	06	90	120	91.43	106.15	77.00	90
117.70	95.13	90	88.82	102.89	101.59	90	110.0	60	60	104.97	103.16	103.16	60	92.67	92.68	67.18	09.86
06	94.30	06	90	90	98.90	90	110.0	90	90	06	90	60	90	117.67	99.92	68.01	90
23.391	18.944	13.700	13.359	23.211	23.387	10.761	10.761	7.340	14.508	22.591	26.450	26.450	13.202	13.969	13.065	9.940	17.726
7.386	13.798	8.376	8.373	11.828	8.370	17.097	10.490	8.271	8.248	8.290	6.214	6.214	13.998	13.559	21.319	9.697	5.492
41.086	13.782	8.376	14.380	11.827	8.363	17.097	10.500	13.566	13.572	13.543	18.499	18.499	13.998	13.208	14.156	9.196	31.430
UHENUQ01	UHENUQ	BENZIL	BENZIL03	PULHUZ	PULHUZ01	CLEOZP01	CLEOZP10	FABFUJ	FABFUJ01	FABFUJ02	TAHLET20	TAHLET21	ZZZVTY12	ZZZVTY03	ZZZVTY04	FAKRIS	FAKRIS01