Supporting information for

L-Proline amide-catalyzed Direct Nitroso Aldol Reactions of α-Branched

Aldehydes: the Distinct Regioselectivity from that with L-Proline

Hai-Ming Guo, ${ }^{\text {ab }}$ Li Cheng, ${ }^{\text {a }}$ Lin-Feng Cun, ${ }^{\text {a }}$ Liu-Zhu Gong, ${ }^{\mathrm{a}}{ }^{\mathrm{a}}$ Ai-Qiao Mi ${ }^{\mathrm{a}}$ and Yao-Zhong Jiang* ${ }^{\text {a }}$

${ }^{a}$ Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan Province and Union Laboratory of Asymmetric Synthesis, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China and Graduate School of Chinese Academy of Sciences, Beijing, China.
E-mail: gonglz@cioc.ac.cn
${ }^{b}$ Department of Chemistry, Henan Normal University, Xinxiang, Henan 453002, People’s Republic of China

General Information. NMR spectra were recorded on a $300-\mathrm{MHz}$ spectrometer (Bruker, Fallanden, Switzerland). IR spectra were recorded on a Nicolet MX-1 spectrometer and reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured on a Perkin-Elmer 341 Polarimeter at $\lambda=589 \mathrm{~nm}(\mathrm{c} \mathrm{g} / 100 \mathrm{ml})$. High-resolution mass spectra were recorded on Bruker BioTOF Q. HPLC analysis was performed on Waters-Breeze (2487 Dual λ Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak AS, and OJ columns were purchased from Daicel Chemical Industries (Hong Kong, China). Purification of reaction products was carried out with flash column chromatography using silica gel 60 (E. Merck 230-400 mesh), silica gel 60 silanized (E. Merck) and Florisil® (Wako Pure Chemical or ACROS 60-100 mesh). Analytical thin layer chromatography (TLC) was performed on E. Merck precoated (0.25 mm) silica gel 60-F254 plates. Visualization was accomplished with UV light and phosphomolybdic acid solution in ethanol by heating. Toluene was used as dried through almina in solvent line purification system. Hexane and ethyl acetate for column chromatography were distilled before use.

Materials. Nitrosobenzene was purchased from Aldrich. Other aromatic nitroso compounds were synthesized by Coleman procedure ${ }^{[1]}$. Other starting materials were purchased from Aldrich or Tokyo Chemical Industry and used directly. (S, R, R)-pyrolidine-2-carboxylic acid (2'-hydroxyl$1^{\prime}, 2^{\prime}$-diphenyl-ethyl)-amine (3) was synthesized according to reference ${ }^{\text {[2] }}$.

Typical procedure for the direct enantioselective a -hydroxyamination reaction of aldehyde:

(entry $\mathbf{1}$, table 2)
To a vial equipped with a magnetic stir bar and charged with catalyst $\mathbf{3}(0.2 \mathrm{mmol})$ was added anhydrous toluene (2 mL) and the suspension was cooled down to $-40^{\circ} \mathrm{C}$. To the suspension was added nitrosobenzene $(1.0 \mathrm{mmol})$ in one portion at $-40^{\circ} \mathrm{C}$. To the resulting solution was then added the appropriate aldehyde (3.0 mmol) in one portion. The resulting reaction mixture was then stirred at $-40{ }^{\circ} \mathrm{C}$ for 3 days until the reaction was determined to be complete (monitored by TLC). The reaction mixture was then transferred to an ethanol suspension of NaBH_{4} at $0{ }^{\circ} \mathrm{C}$. After 20 minutes, the reaction was treated with saturated aqueous NaHCO_{3}, extracted with dichloromethane (3×30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting residue was then purified by silica gel chromatography (eluent: hexane:ethyl acetate $=7: 1$) and fractions concentrated in vacuo to provide the title compounds. The enantioselectivity was determined by chiral HPLC analysis.

3-Benzo[1,3]dioxol-5-yl-2-(hydroxy-phenyl-amino)-2-methyl-propan-1-ol (entry 1, table 2). Yield: 74%; white solid, m.p. $130-131^{\circ} \mathrm{C}$, IR (KBr), $3460,2979,2925,2891,1488,1442,1242$, $1073,927,817,762,701,657 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.90(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}$, $2 \mathrm{H})$, 6.57-6.68 (m, 3H), 7.17-7.32 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 17.56, 38.54, $65.24,66.82,100.75,107.82,111.08,123.72,124.87,125.88,128.01,130.99,145.99,147.25$, 148.34. HRMS ($\mathrm{M}+\mathrm{Na}$) exact mass calcd for $\left(\mathrm{C} 17 \mathrm{H} 19 \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O} 4\right)$ requires $\mathrm{m} / \mathrm{z} 324.1212$, found m / z 324.1206. $[\alpha]_{\mathrm{D}}=+2.01\left(\mathrm{c}=1.64, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 59%, determined by HPLC (Daicel Chiralpak OJ-H, i- PrOH/hexane 10:90), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. major enantiomer, $t_{R} 17.37 \mathrm{~min}$ and minor enantiomer, $t_{R} 22.97 \mathrm{~min}$.

3-Benzo[1,3]dioxol-5-yl-2-[(4-chloro-phenyl)-hydroxy-amino]-2-methyl-propan-1-ol (entry 2, table 2). Yield: 63%; white powder, m.p. $68-69^{\circ} \mathrm{C}$, $\operatorname{IR}(\mathrm{KBr}), 3410,2973,2926,2890,1487,1440$, 1243, 1091, 1038, 1010, 928, 835, 818, 717, $668 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.89$ (s, 3H), 2.39 (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 2 \mathrm{H}), 6.58-6.70(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ $17.42,38.38,65.16,66.96,100.80,107.88,110.95,123.65,126.06,128.05,130.56,131.19,146.07$, 146.79, 147.29. HRMS $(\mathrm{M}+\mathrm{Na})$ exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 358.0822$, found m / z 358.0817. $[\alpha]_{\mathrm{D}}=+6.99\left(\mathrm{c}=2.28, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 63%, determined by

HPLC (Daicel Chiralpak OJ-H, $i-\mathrm{PrOH} /$ hexane $10: 90$), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. major enantiomer, $t_{R} 15.10 \mathrm{~min}$ and Minor enantiomer, $t_{R} 19.45 \mathrm{~min}$.

3-Benzo[1,3]dioxol-5-yl-2-[(2-chloro-phenyl)-hydroxy-amino]-2-methyl-propan-1-ol (entry 3, table 2). Yield: 71%; white powder, m.p. $67-68^{\circ} \mathrm{C}$, IR (KBr), 3371, 2972, 2933, 2887, 1488, 1440, $1242,1037,929,816,763,738,678 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.03(\mathrm{~s}, 3 \mathrm{H}), 3.33$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 6.59-7.72(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm}) 15.46,37.25,64.52,67.90,100.62,107.67,110.96,123.65,127.12,127.60,128.35$, $129,53,130.32,131.78,145.22,145.86,147.05$. HRMS (M+Na) exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{1} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}\right)$ requires $m / z 358.0822$, found $m / z 358.0817$. $[\alpha]_{\mathrm{D}}=-5.25\left(\mathrm{c}=1.58, \mathrm{CH}_{3} \mathrm{OH}\right)$ Enantiomeric excess: 59\%, determined by HPLC (Daicel Chiralpak OJ-H, i - PrOH/hexane 10:90), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 10.98 \mathrm{~min}$ and Minor enantiomer, $t_{R} 19.13$ min.

3-Benzo[1,3]dioxol-5-yl-2-[(2-bromo-phenyl)-hydroxy-amino]-2-methyl-propan-1-ol (entry 4, table 2). Yield: 76%; white powder, m.p. $86-87^{\circ} \mathrm{C}$, $\operatorname{IR}(\mathrm{KBr}), 3428,2972,2931,2887,1488,1440$, 1243, 1037, 929, 815, 764, 733, $663 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.88(\mathrm{~s}, 3 \mathrm{H}), 3.36-$ $3.60(\mathrm{~s}, \mathrm{br}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 6.56-6.66(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.72(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 14.09,37.72,64.34,68.10,100.69,107.75,111.03,123.27,123.72,127.98$, 128.27, 128.55, 130.36, 132.71, 145.97, 146.37, 147.15. HRMS (M+Na) exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{1} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}\right)$ requires $m / z 402.0317$, found $m / z 402.0311 .[\alpha]_{\mathrm{D}}=-4.73\left(\mathrm{c}=1.12, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 64\%, determined by HPLC (Daicel Chiralpak OJ-H, i - PrOH/hexane 10:90), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 11.25 \mathrm{~min}$ and Minor enantiomer, $t_{R} 17.96$ min.

3-Benzo[1,3]dioxol-5-yl-2-[(3-bromo-phenyl)-hydroxy-amino]-2-methyl-propan-1-ol (entry 5, table 2). Yield: 60%; white powder, m.p. $74-75^{\circ} \mathrm{C}$, IR (KBr), 3381, 2975, 2930, 2887, 1488, 1440, $1242,1038,928,816,786,732,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.95(\mathrm{~s}, 3 \mathrm{H}), 2.42$ (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.94(\mathrm{~s}, 2 \mathrm{H}), 6.60-6.73(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.53(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 17.55$, $38.34,65.21,67.13,100.79,107.79,110.98,121.72,123.41,123.68,127.72,128.76,129.11$, 130.53, 146.07, 147.29, 149.81. HRMS ($\mathrm{M}+\mathrm{Na}$) exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{1} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}\right)$ requires $m / z 402.0317$, found $m / z 402.0311 .[\alpha]_{\mathrm{D}}=+2.24\left(\mathrm{c}=3.35, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 55%,

3-Benzo[1,3]dioxol-5-yl-2-[(4-bromo-phenyl)-hydroxy-amino]-2-methyl-propan-1-ol (entry 6, table 2). Yield: 61%; white powder, m.p. $80-81^{\circ} \mathrm{C}$, IR (KBr), 3353, 2973, 2929, 2889, 1488, 1243, $1039,1007,928,832,711,661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.93(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}$, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5,94$ $(\mathrm{s}, 2 \mathrm{H}), 6.60-6.73(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.47(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 17.42,38.43$, 65.10, 67.15, 100.82, 107.90, 110.99, 119.21, 123.69, 126.42, 130.54, 131.09, 146.11, 147.24, 147.33. HRMS (M+Na) exact mass calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Br}_{1} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}\right)$ requires $m / \mathrm{z} 402.0317$, found m / z 402.0311. $[\alpha]_{\mathrm{D}}=+6.36\left(\mathrm{c}=1.65, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 61%, determined by HPLC (Daicel Chiralpak OJ-H, i - PrOH/hexane 10:90), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 16.39 \mathrm{~min}$ and Minor enantiomer, $t_{R} 21.53 \mathrm{~min}$.

3-Benzo[1,3]dioxol-5-yl-2-(hydroxy-p-tolyl-amino)-2-methyl-propan-1-ol (entry 7, table 2). Yield: 66%; white powder, m.p. $158-160^{\circ} \mathrm{C}$, IR (KBr), 3530, 3293, 2983, 2920, 1501, 1486, 1440, $1243,1035,924,833,814,786,727,686,595 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 0.91 (s, $3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59$ $(\mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 2 \mathrm{H}), 6.60-6.70(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.26(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 17.38,20.83,38.39,65.12,66.71,100.67,107.73,111.04,123.67,124.73,128.56$, $130.99,135.51,145.53,145.87,147.15$. HRMS $(\mathrm{M}+\mathrm{Na})$ exact mass calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{4}\right)$ requires $m / z 338.1368$, found $m / z 338.1363 .[\alpha]_{\mathrm{D}}=+8.67\left(\mathrm{c}=1.13, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 59%, determined by HPLC (Daicel Chiralpak OJ-H, i- PrOH/hexane 10:90), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 14.33 \mathrm{~min}$ and Minor enantiomer, $t_{R} 18.74 \mathrm{~min}$.

2-(Hydroxy-phenyl-amino)-2-methyl-butan-1-ol (entry 2, table 3). Yield: 53\%; colourless oil, IR (film), 3323, 2940, 2881, 1595, 1486, 1377, 1044, 916, 770, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.21-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 3.57$ $(\mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.25(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ (ppm) 8.34, 16.58, 25.74, 65.55, 66.32, 124.58, 125.41, 127.63, 148.32. HRMS (M+Na) exact mass calcd for $\left(\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}\right)$ requires m / z 218.1157, found m / z 218.1151. $[\alpha]_{\mathrm{D}}=-3.05$ (c = 1.87, $\mathrm{CH}_{3} \mathrm{OH}$). Enantiomeric excess: 46%, determined by HPLC (Daicel Chiralpak AS-H, $i-$ $\mathrm{PrOH} /$ hexane $5: 95$), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 9.98 \mathrm{~min}$ and Minor

2-(Hydroxy-phenyl-amino)-2-methyl-pentan-1-ol (entry 3, table 3). Yield: 61\%; colourless oil, IR (film), 3323, 2958, 2929, 2872, 1596, 1487, 1377, 1052, 1026, 770, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.30(\mathrm{~m}, 4 \mathrm{H}), 3,57(\mathrm{~d}, J=11.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.54(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 14.60$, 17.19, 17.48, 35.52, 66.10, 66.19, 124.55, 125.44, 127.66, 148.31. HRMS (M+Na) exact mass calcd for $\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}\right)$ requires $m / z 232.1313$, found m / z 232.1308. $[\alpha]_{\mathrm{D}}=-5.69\left(\mathrm{c}=3.35, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 46\%, determined by HPLC (Daicel Chiralpak AS-H, i- PrOH/hexane 5:95), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 8.45 \mathrm{~min}$ and Minor enantiomer, $t_{R} 7.98$ min.

3-(4-tert-Butyl-phenyl)-2-(hydroxy-phenyl-amino)-2-methyl-propan-1-ol (entry 4, table 3).

 Yield: 69%; white powder, m.p. $163-165^{\circ} \mathrm{C}$, IR (KBr), 3448, 2956, 2923, 1486, 1363, 1201, 1054, 835, 769, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 2.47(\mathrm{~d}$, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}) 3.52(\mathrm{q}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~s}$, $1 \mathrm{H}), 7.06-7.36(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 17.55,31.33,34.31,38.32,65.28$, 66.90, 124.89, 125.84, 127.99, 130.40, 134.18, 148.36, 149.05. HRMS (M+Na) exact mass calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}\right)$ requires $m / z 336.1939$, found $m / z 336.1934$. $[\alpha]_{\mathrm{D}}=+7.42\left(\mathrm{c}=1.28, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 59\%, determined by HPLC (Daicel Chiralpak AD, i - $\mathrm{PrOH} /$ hexane 5:95), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 10.87 \mathrm{~min}$ and Minor enantiomer, $t_{R} 15.15 \mathrm{~min}$.2-(Hydroxy-phenyl-amino)-3-(4-isopropyl-phenyl)-2-methyl-propan-1-ol (entry 5, table 3). yield: 71%; white powder, m.p. $126-127^{\circ} \mathrm{C}$, IR (KBr), 3447, 2956, 2423, 2869, 1487, 1471, 1052, 918, 837, 771, $701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 6 \mathrm{H})$, 2.46 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.90(\mathrm{~m}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ $(\mathrm{d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.36(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 17.53$, 23.96, 33.61, 38.44, 65.27, 66.89, 124.89, 125.85, 126.03, 127.99, 130.65, 134.55, 146.78, 148.38. HRMS ($\mathrm{M}+\mathrm{Na}$) exact mass calcd for $\left(\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{Na}_{1} \mathrm{O}_{2}\right)$ requires $m / z 322.1783$, found $m / z 322.1778$. $[\alpha]_{\mathrm{D}}=+4.41\left(\mathrm{c}=1.86, \mathrm{CH}_{3} \mathrm{OH}\right)$. Enantiomeric excess: 46%, determined by HPLC (Daicel Chiralpak AD, $i-\mathrm{PrOH} /$ hexane 5:95), UV 254 nm , flow rate $1.0 \mathrm{ml} / \mathrm{min}$. Major enantiomer, $t_{R} 13.15$ min and Minor enantiomer, $t_{R} 17.15 \mathrm{~min}$.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

\qquad

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

ppon , , $1, \frac{1}{2}$

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

OH OH

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

$\stackrel{1}{1}$
50

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2005
References:

1. R. E. Lutz, M. R. Lytton, J. Org. Chem., 1937, 2, 68
2. (a) Z. Tang, F. Jiang, L.-T. Yu, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang and Y.-D. Wu, J. Am. Chem. Soc., 2003,

125, 5262; (b) Z. Tang, F. Jiang, X. Cui, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang and Y.-D. Wu, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5755.

