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Details in experiments 
 

 

Pigment exchange and protein isolation 

Native-RC from the photosynthetic bacterium RS601 (one of Rb. sphaeroides strain) was separated 

and purified as described in ESI-Ref. 1. 

Pheophytin (Phe)-exchanged RC (Phe-RC) was separated and purified by using the methods 

developed by Scheer etc. ESI-Ref. 2 with further modifications. Phe, collected from the spinach (spanacia 

oleracea Mill.) leaves, was suspended in acetone and added into the native-RC suspension (OD800, 1 

cm=5.0). The final concentration of Phe was 20 times of that of bacteriopheophytin (Bphe) in 

native-RC. After incubation at 43.5 oC for 1 h, the system was cooled down and kept at room 

temperature. Ten folds volume of Tris-LDAO (TL) buffer was then added to dilute the concentration 

of acetone. The sample was loaded immediately to the DEAE-Cellulose 52 column after incubation to 

prevent the de-binding of the bound Phe at the BpheA site. The column was rinsed in turn with TL 

buffer containing 0.09 mol/L and 0.12 mol/L NaCl. The eluted Phe-RC was concentrated by 

ultrafiltration with a 10 KD cut-off membrane to obtain a final concentration with OD800, 1 cm=2.0. The 

samples were then loaded onto the tubes with 10%-40% sucrose gradient and centrifuged at 260,000 g 

for 16 h. The fraction close to 25% gradient was collected and dialyzed against 1 L TL buffer to 

exclude sucrose. 

 

 

Synthesis of the novel mesoporous WO3-TiO2 

The tailor-made three dimensional (3D)-wormlike mesoporous WO3-TiO2 films (pore size of 7.1 nm) 

were prepared as follows. Therein, 1 g of triblock copolymer P123 (EO20PO70EO20) was dissolved in 

10 g of ethanol, then 0.8 g of WCl6 and 2.4 g of Ti(OBu)4 were added into the solution and the mixture 

was further stirred for 2 h at room temperature. The target film was achieved by spin-coating of the 

mother solution on indium tin oxide (ITO) grass with the thickness of ca. 150 nm. The solvent was 

fully evaporated in air (relative humidity: 20 ~ 30%). After gelation at 45 oC for 1 day, the inorganic 

framework was obtained via calcination at 350 oC in air. 

Another 3D-worm-like mesoporous WO3-TiO2 films (pore size of 3.4 nm) and the 2D-hexagonal 

mesoporous WO3-TiO2 films (pore size of 9.8 nm) provided for comparison were prepared similarly, 

except the amphiphiles used were substituted with P85 (EO26PO39EO26) and F127 (EO106PO70EO106), 

respectively. 
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Fabrication of the RC/WO3-TiO2 photoelectrodes 

 

Protein immobilization was achieved by immersing the freshly prepared WO3-TiO2 films (~ 1.5 cm2) 

in the pH 8.0 Tris-HCl buffer solution of native-RC/Phe-RC (at 4 °C) for 2 ~ 3 days. Prior to all 

measurements, the films were rinsed and kept in buffer solution. The successful entrapment of RC on 

the tailored mesoporous WO3-TiO2 films was proved by the near infrared (NIR)-visible absorption 

spectra presented in ESI-Fig. 6. The results from another two kinds of mesoporous WO3-TiO2 films 

mentioned above and data from Al2O3 gel films reported in our previous work ESI-Ref. 3 were also given 

for comparison, as shown in ESI-Table 1. 
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ESI-Fig. 1 Normalized NIR-Vis absorption spectra of native-RC (a, dash line) and Phe-RC (b, solid 

line) in pH 8.0 Tris-HCl buffer at 293 K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESI-Fig. 2 Normalized CD spectra of native-RC (a, dash line) and Phe-RC (b, solid line) in pH 8.0 

Tris-HCl buffer at 293 K. 
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ESI-Fig. 3 XRD pattern (left) and TEM image (right) of the tailor-made 3D-wormlike mesoporous 

WO3-TiO2.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESI-Fig. 4 Nitrogen sorption isotherms and pore-size distribution plots (inset) for the calcined 

tailor-made 3D-wormlike mesoporous WO3-TiO2 film. 
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ESI-Fig. 5 UV-Vis-NIR absorption spectrum of the tailor-made 3D-wormlike mesoporous WO3-TiO2 

film recorded using blank ITO as background. 

 
 

 

ESI-Table 1 Structural Characterization of different matrix prepared for entrapping RC 

Matrix Pore structure Pore size (nm) Thickness 
(nm) b 

Contact 
angle c 

MRC immobilized 
(µmol/g) d 

Al2O3 gel a Disordered 
voids Widely distributed 800 ~ 

1200 31 ~ 33° 0.15 ~ 0.35 

WO3-TiO2 2D-hexagonal 9.8 ± 0.8 ~ 150 23.4° 0.29/0.26 
WO3-TiO2 3D-wormlike 3.4 ± 0.3 ~ 150 24.6° 0.31/0.32 
WO3-TiO2 3D-wormlike 7.1 ± 0.6 ~ 150 24.2° 0.63/0.59 

 

a Preparation of both the bare and RC-embedded Al2O3 gel films was according to our work reported previously. 
ESI-Ref.. 3 b Thickness of the matrix was determined with a SEA 5120 element monitor MX instrument with an average 

of five measurements. c All data for contact angle were measured with a Phoenix-300 analyzer at 298 K in air with an 

average of four times. d Molar amount (M) listed here were calculated from the differential absorption spectra of RC 

solution before and after immobilization (molar extinction coefficient of RC at 802 nm is ca. 2.88 x 105 M-1 cm-1) 

with an average of three measurements. The data presented in front of and behind the diagonal are the M for 

native-RC and Phe-RC, respectively. 
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ESI-Table 2 The ultrafast pump-probe dynamics of native-RC and Phe-RC in buffer a 

Sample Excitation wavelength (nm) τ1 (fs) τ2 (ps) τ3 
Native-RC 800 220 2.0 N/A 

Phe-RC 800 450 3.0 N/A 
Native-RC 850 130 2.6 N/A 

Phe-RC 850 310 4.2 N/A 
 

a  τ1(excited at 800 nm): B* → P+ → P-, τ1(excited at 850 nm): P+ → P-; τ2(excited at 800 nm, 850 nm): P- → P+Bphe- 
(P- → P+Bchl-); τ3(excited at 800nm, 850 nm): P+Bphe- (P+Bchl-) → P+QA

-   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESI-Fig. 6 NIR-Vis absorption spectra of the native-RC/Al2O3 film (dot line), native-RC/WO3-TiO2 

film (dash line), and Phe-RC/WO3-TiO2 film (solid line) at 293 K. Absorption of blank Al2O3 and 

WO3-TiO2 films was subtracted as background. 
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ESI-Fig. 7 Short-circuit photocurrent (Isc) responses of the native-RC/Al2O3 film (a, dot line), 

native-RC/WO3-TiO2 film (b, dash line), and Phe-RC/WO3-TiO2 film (c, solid line) in pH 8.0 

Tris-HCl buffer containing 8 mM sodium dithionite illuminated with a 20 W incandescent lamp 

coupled with a filter (λ > 600 nm, Iinc = 0.1 mW cm-2). The bias was set at the open-circuit voltage. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ESI-Fig. 8 Open-circuit photovoltage (Voc) responses of the native-RC/Al2O3 film (a, dot line), 

native-RC/WO3-TiO2 film (b, dash line), and Phe-RC/WO3-TiO2 film (c, solid line) in pH 8.0 
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Tris-HCl buffer containing 8 mM sodium dithionite illuminated with a 20 W incandescent lamp 

coupled with a filter (Κ> 600 nm, Iinc = 0.1 mW cm-2) 

 

 

 

ESI-Table 3 Photoelectric performance of different RC-modified electrodes a 

Sample MRC (µmol/g) Isc (µA cm-2) Voc (mV) IPCE% (at 800 nm) 

Phe-RC/WO3-TiO2 (1) 0.59 2.2 130 23 

Native-RC/WO3-TiO2 (2) 0.63 0.9 108 11 

Native-RC/Al2O3 (3) 0.35 0.08 3 1 
 

a Short-circuit photocurrent (Isc) (detected at λ > 600 nm, Iinc = 0.1 mW cm-2), open-circuit photovoltage (Voc) 

(detected at λ > 600 nm, Iinc = 0.1 mW cm-2), and incident photon-to-current conversion efficiency (IPCE) listed here 

were all measured in pH 8.0 Tris-HCl buffer containing 8 mM sodium dithionite with an average of five 

measurements.  
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