Supporting Information

Manipulated photocurrent generation from pigment exchanged photosynthetic proteins adsorbed to nanostructured WO₃-TiO₂ electrodes

Yidong Lu^{*a*}, Jingjing Xu^{*a*}, Yuan Liu^{*b*}, Baohong Liu^{*a*}, Chunhe Xu^{*b*}, Dongyuan Zhao^{*a*}, Jilie Kong^{**a*}

^a Chemistry Department, Fudan University, Shanghai 200433, China ^b Shanghai Institute of Plant Physiology & Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Science, Shanghai 200032, China # This journal is ${\ensuremath{\mathbb C}}$ The Royal Society of Chemistry 2005

Details in experiments

Pigment exchange and protein isolation

Native-RC from the photosynthetic bacterium RS601 (one of *Rb. sphaeroides* strain) was separated and purified as described in ESI-Ref. 1.

Pheophytin (Phe)-exchanged RC (Phe-RC) was separated and purified by using the methods developed by Scheer etc. ^{ESI-Ref. 2} with further modifications. Phe, collected from the spinach (*spanacia oleracea* Mill.) leaves, was suspended in acetone and added into the native-RC suspension (OD_{800, 1} cm=5.0). The final concentration of Phe was 20 times of that of bacteriopheophytin (Bphe) in native-RC. After incubation at 43.5 °C for 1 h, the system was cooled down and kept at room temperature. Ten folds volume of Tris-LDAO (TL) buffer was then added to dilute the concentration of acetone. The sample was loaded immediately to the DEAE-Cellulose 52 column after incubation to prevent the de-binding of the bound Phe at the Bphe_A site. The column was rinsed in turn with TL buffer containing 0.09 mol/L and 0.12 mol/L NaCl. The eluted Phe-RC was concentrated by ultrafiltration with a 10 KD cut-off membrane to obtain a final concentration with OD_{800, 1 cm}=2.0. The samples were then loaded onto the tubes with 10%-40% sucrose gradient and centrifuged at 260,000 *g* for 16 h. The fraction close to 25% gradient was collected and dialyzed against 1 L TL buffer to exclude sucrose.

Synthesis of the novel mesoporous WO₃-TiO₂

The tailor-made three dimensional (3D)-wormlike mesoporous WO₃-TiO₂ films (pore size of 7.1 nm) were prepared as follows. Therein, 1 g of triblock copolymer P123 ($EO_{20}PO_{70}EO_{20}$) was dissolved in 10 g of ethanol, then 0.8 g of WCl₆ and 2.4 g of Ti(OBu)₄ were added into the solution and the mixture was further stirred for 2 h at room temperature. The target film was achieved by spin-coating of the mother solution on indium tin oxide (ITO) grass with the thickness of *ca*. 150 nm. The solvent was fully evaporated in air (relative humidity: 20 ~ 30%). After gelation at 45 °C for 1 day, the inorganic framework was obtained via calcination at 350 °C in air.

Another 3D-worm-like mesoporous WO_3 -TiO₂ films (pore size of 3.4 nm) and the 2D-hexagonal mesoporous WO_3 -TiO₂ films (pore size of 9.8 nm) provided for comparison were prepared similarly, except the amphiphiles used were substituted with P85 (EO₂₆PO₃₉EO₂₆) and F127 (EO₁₀₆PO₇₀EO₁₀₆), respectively.

Supplementary Material (ESI) for Chemical Communications

This journal is ${\ensuremath{\mathbb C}}$ The Royal Society of Chemistry 2005

Fabrication of the RC/WO₃-TiO₂ photoelectrodes

Protein immobilization was achieved by immersing the freshly prepared WO₃-TiO₂ films (~ 1.5 cm²) in the pH 8.0 Tris-HCl buffer solution of native-RC/Phe-RC (at 4 °C) for 2 ~ 3 days. Prior to all measurements, the films were rinsed and kept in buffer solution. The successful entrapment of RC on the tailored mesoporous WO₃-TiO₂ films was proved by the near infrared (NIR)-visible absorption spectra presented in ESI-Fig. 6. The results from another two kinds of mesoporous WO₃-TiO₂ films mentioned above and data from Al₂O₃ gel films reported in our previous work ^{ESI-Ref. 3} were also given for comparison, as shown in ESI-Table 1.

ESI-Fig. 1 Normalized NIR-Vis absorption spectra of native-RC (**a**, dash line) and Phe-RC (**b**, solid line) in pH 8.0 Tris-HCl buffer at 293 K.

ESI-Fig. 2 Normalized CD spectra of native-RC (**a**, dash line) and Phe-RC (**b**, solid line) in pH 8.0 Tris-HCl buffer at 293 K.

ESI-Fig. 3 XRD pattern (left) and TEM image (right) of the tailor-made 3D-wormlike mesoporous WO₃-TiO₂.

ESI-Fig. 4 Nitrogen sorption isotherms and pore-size distribution plots (inset) for the calcined tailor-made 3D-wormlike mesoporous WO₃-TiO₂ film.

ESI-Fig. 5 UV-Vis-NIR absorption spectrum of the tailor-made 3D-wormlike mesoporous WO₃-TiO₂ film recorded using blank ITO as background.

Matrix	Pore structure	Pore size (nm)	Thickness (nm) ^b	Contact angle ^c	$M_{\rm RC}$ immobilized $(\mu { m mol/g})^{d}$
Al ₂ O ₃ gel ^{<i>a</i>}	Disordered voids	Widely distributed	800 ~ 1200	31 ~ 33°	0.15 ~ 0.35
WO ₃ -TiO ₂	2D-hexagonal	9.8 ± 0.8	~ 150	23.4°	0.29/0.26
WO ₃ -TiO ₂	3D-wormlike	3.4 ± 0.3	~ 150	24.6°	0.31/0.32
WO ₃ -TiO ₂	3D-wormlike	7.1 ± 0.6	~ 150	24.2°	0.63/0.59

ESI-Table 1 Structural Characterization of different matrix prepared for entrapping RC

^{*a*} Preparation of both the bare and RC-embedded Al_2O_3 gel films was according to our work reported previously. ^{ESI-Ref. 3 *b*} Thickness of the matrix was determined with a SEA 5120 element monitor MX instrument with an average of five measurements. ^{*c*} All data for contact angle were measured with a Phoenix-300 analyzer at 298 K in air with an average of four times. ^{*d*} Molar amount (M) listed here were calculated from the differential absorption spectra of RC solution before and after immobilization (molar extinction coefficient of RC at 802 nm is ca. 2.88 x 10⁵ M⁻¹ cm⁻¹) with an average of three measurements. The data presented in front of and behind the diagonal are the M for native-RC and Phe-RC, respectively.

Sample	Excitation wavelength (nm)	τ_1 (fs)	τ_2 (ps)	τ_3
Native-RC	800	220	2.0	N/A
Phe-RC	800	450	3.0	N/A
Native-RC	850	130	2.6	N/A
Phe-RC	850	310	4.2	N/A

ESI-Table 2 The ultrafast pump-probe dynamics of native-RC and Phe-RC in buffer ^a

^{*a*} τ_1 (excited at 800 nm): B* \rightarrow P₊ \rightarrow P₋, τ_1 (excited at 850 nm): P₊ \rightarrow P₋; τ_2 (excited at 800 nm, 850 nm): P₋ \rightarrow P⁺Bphe⁻ (P₋ \rightarrow P⁺Bchl⁻); τ_3 (excited at 800nm, 850 nm): P⁺Bphe⁻(P⁺Bchl⁻) \rightarrow P⁺Q_A⁻

ESI-Fig. 6 NIR-Vis absorption spectra of the native-RC/Al₂O₃ film (dot line), native-RC/WO₃-TiO₂ film (dash line), and Phe-RC/WO₃-TiO₂ film (solid line) at 293 K. Absorption of blank Al₂O₃ and WO₃-TiO₂ films was subtracted as background.

ESI-Fig. 7 Short-circuit photocurrent (I_{sc}) responses of the native-RC/Al₂O₃ film (**a**, dot line), native-RC/WO₃-TiO₂ film (**b**, dash line), and Phe-RC/WO₃-TiO₂ film (**c**, solid line) in pH 8.0 Tris-HCl buffer containing 8 mM sodium dithionite illuminated with a 20 W incandescent lamp coupled with a filter ($\lambda > 600$ nm, $I_{inc} = 0.1$ mW cm⁻²). The bias was set at the open-circuit voltage.

ESI-Fig. 8 Open-circuit photovoltage (V_{oc}) responses of the native-RC/Al₂O₃ film (**a**, dot line), native-RC/WO₃-TiO₂ film (**b**, dash line), and Phe-RC/WO₃-TiO₂ film (**c**, solid line) in pH 8.0

Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2005

Tris-HCl buffer containing 8 mM sodium dithionite illuminated with a 20 W incandescent lamp coupled with a filter (K> 600 nm, $I_{inc} = 0.1 \text{ mW cm}^{-2}$)

ESI-Table 3 Photoelectric performance of different RC-modified electrodes^{*a*}

Sample	M_{RC} (µmol/g)	$I_{\rm sc}$ ($\mu \rm A \ cm^{-2}$)	$V_{\rm oc}({\rm mV})$	IPCE% (at 800 nm)
Phe-RC/WO ₃ -TiO ₂ (1)	0.59	2.2	130	23
Native-RC/WO ₃ -TiO ₂ (2)	0.63	0.9	108	11
Native-RC/Al ₂ O ₃ (3)	0.35	0.08	3	1

^{*a*} Short-circuit photocurrent (I_{sc}) (detected at $\lambda > 600$ nm, $I_{inc} = 0.1$ mW cm⁻²), open-circuit photovoltage (V_{oc}) (detected at $\lambda > 600$ nm, $I_{inc} = 0.1$ mW cm⁻²), and incident photon-to-current conversion efficiency (IPCE) listed here were all measured in pH 8.0 Tris-HCl buffer containing 8 mM sodium dithionite with an average of five measurements.

ESI-References:

- X.H. Zeng, H. Yu, Y.Q. Wu, M.J. Wu, J.M. Wei, H.X. Song and C.H. Xu, *Acta. Biochim. Biophys. Sinica*. 1997, 29, 46.
- 2. M. Meyer and H. Scheer, Photosynth. Res. 1995, 44, 55.
- J.Q. Zhao, N. Ma, B.H. Liu, Y.L. Zhou, C.H. Xu and J.L. Kong, J. Photochem. Photobiol. A: Chem. 2002, 152, 53.