Supplementary Material (ESI) for Chemical Communications # This journal is © The Royal Society of Chemistry 2006

Supplementary Information

Lanthanide-induced helical arrays of $[{Co(III) sepulchrate} \cap {p-sulfonatocalix[4]arene}]$ supermolecules

Christopher B. Smith,^{*a*}* Leonard J. Barbour,^{*b*} Mohamed Makha,^{*a*} Colin L. Raston,^{*a*}*

Alexandre N. Sobolev^a

^aSchool of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, W.A. 6009, Australia. Email: cbsmith@cyllene.uwa.edu.au ^bDepartment of Chemistry, University of Stellenbosch, 7602 Matieland, South Africa.

Synthesis of I

A hot (~80°) solution of [Co(diOHsar)]Cl₃ 2^1 (17.1 mg, 3.6 × 10⁻⁵ mol) in water (2 cm³) was added to a hot (~80°) solution of *p*-sulfonatocalix[4]arene tetrasodium salt 1 (10 mg, 1.2×10^{-5} mol) and Pr(O₃SCF₃)₃ (14.1 mg, 2.4×10^{-5} mol) in water (2 cm³). The pH was adjusted to 4-5 using 1M aqueous NaOH solution and the solution cooled slowly over 24 h. Small orange crystals formed (3 mg) which were suitable for X-ray diffraction.

X-Ray crystallography of I

The X-ray diffracted intensities were measured from a single crystal (0.45 x 0.42 x 0.33 mm) at 153 K on a Bruker SMART CCD instrument using a monochromatized Mo- K_{α} ($\lambda = 0.71073$ Å) X-ray source. Data were corrected for Lorentz and polarization effects and absorption correction applied using multiple symmetry equivalent reflections. The structures were solved by direct method and refined on F^2 using Bruker SHELXTL crystallographic package.² A full matrix least-squares refinement procedure was used, minimizing $w(F_0^2 - F_c^2)$, with $w = [\sigma^2(F_0^2) + (AP)^2 + BP]^{-1}$, where $P = (F_0^2 + 2F_c^2)/3$. Agreement factors ($R = \Sigma ||F_0| - |F_c||/\Sigma ||F_0|$, $wR2 = \{\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma [w(F_0^2)^2]\}^{1/2}$ and GOF = $\{\Sigma [w(F_0^2 - F_c^2)^2]/(n-p)\}^{1/2}$ are cited, where *n* is the number of reflections and *p* the total number of parameters refined).

Crystal/refinement details: C₄₂H_{57.5}CoN₆O_{20.75}Pr_{0.17}S₄, M = 1189.12, F(000) = 9894 e, Tetragonal, $I4_1/a$ (No. 88), Z = 16, T = 153 K, a = 25.47(5), c = 41.51(7) Å, V = 26929(68) Å³; $D_c = 1.173$ g cm⁻³; sin $\theta/\lambda_{max} = 0.587$; N(unique) = 10610 (merged from 64020, $R_{int} = 0.1624$, $R_{\sigma} = 0.1175$), N_o ($I > 2\sigma(I)$) = 5316; R = 0.1695, wR2 = 0.3882 (A,B = 0.25, 250.0), GOF = 1.019; $|\Delta\rho_{max}| = 2.4(2)$ e Å⁻³.

 R. J. Geue, T. W. Hambley, J. M. Harrowfield, A. M. Sargeson and M. R. Snow, J. Am. Chem. Soc., 1984, 106, 5478. # Supplementary Material (ESI) for Chemical Communications# This journal is © The Royal Society of Chemistry 2006

 G. M. Sheldrick, SHELX-97: Structure solution and refinement programs, University of Göttingen, 1997; Bruker SMART, SAINT, SADABS & SHELXTL. v5.1., 1997, Bruker AXS Inc., Madison, Wisconsin, USA.