Direct enantio- and diastereoselective Mannich reactions of malonate and β -keto esters with *N*-Boc and *N*-Cbz aldimines catalysed by a bifunctional cinchonine derivative

A. Louise Tillman^a, Jinxing Ye^b and Darren J. Dixon^b* ^a University Chemical Laboratories, University of Cambridge, Lensfield Road, Cambridge. CB2 1EW. UK.

^b School of Chemistry, The University of Manchester, Oxford Road, Manchester. M13 9PL. UK; Tel: +44 (0) 161 275 1426; E-mail: darren.dixon@manchester.ac.uk.

SUPPLEMENTARY INFORMATION

General experimental

Melting points were recorded on a Gallenkamp melting point apparatus and are uncorrected. Optical rotations were recorded on a Perkin-Elmer 241 Polarimeter and $\left[\alpha\right]_{D}^{25}$ are given in 10⁻¹ deg ml / g, concentrations are given in g / 100 ml. IR spectra were recorded on a Perkin-Elmer Spectrum 1 FTIR with an ATR sampling accessory as neat films or compressed solids; only selected absorbances are quoted. HRMS was recorded on Finnigan MAT 900XLT or a Finnigan MAT 95XP at the EPSRC National Mass Spectrometry Service. ¹H NMR spectra were recorded at 400 MHz on a Brucker DRX 400 spectrometer at 300 K unless otherwise stated against an internal deuterium lock and are reported ($\delta_{H} \pm 0.01$) / ppm (number of protons, multiplicity, coupling constant ($J \pm 0.1$) / Hz, assignment). ¹³C NMR spectra were recorded on the same instrument at 100 MHz with broadband proton decoupling and are quoted ($\delta_{C} \pm 0.1$) / ppm (assignment).

Flash column chromatography was performed on 9385 silica gel unless otherwise stated. Chiral HPLC analysis was performed on a Hewlett-Packard Series 1090 liquid chromatograph and retention times (r.t.) are given from the solvent front. THF was distilled from calcium hydride, lithium aluminium hydride with triphenylmethane indicator. Chloroform and deuterated chloroform were distilled from CaCl₂. All other reagents and solvents were used as provided without purification.

N-Boc imines were prepared by the method reported by Jacobsen.¹

General two-step procedure for the synthesis of N-Cbz aryl aldimines 4¹ and 17

Step 1

To a rapidly stirred suspension of benzyl carbamate (4.65 g, 0.031 mol) and benzenesulfinic acid sodium salt (10.18 g, 0.062 mol) in methanol / water (30 mL / 60 mL) was added aldehyde (4.78 mL, 0.047 mol) in one portion, followed by formic acid (4.7 mL). The reaction mixture was vigorously stirred for three days and then filtered. The resulting white solid was filtered and washed with water (50 mL) and ether (50 mL) and then dried *in vacuo* to yield clean *sulphone* that was then used without further purification in the next step

Benzenesulfonyl-phenylmethyl-carbamic acid benzyl ester

11.45 g, 0.03 mmol, 97%, from benzaldehyde as a white solid. IR (film) / cm⁻¹ $v_{max} = 3330$ (N-H), 1694 (C=O_{carbamate}), 1519 (Ar), 1494 (Ar), 1308 (SO_{2 asymm}), 1142 (SO_{2 symm}); ¹H NMR (400 MHz; CDCI₃): δ_{H} 7.83 (2H, d, *J* 7.6, SO₂Ph_{ortho}), 7.60 (1H, t, *J* 7.5, SO₂Ph_{para}), 7.45-7.32 (10H, m, Ar), 7.23-7.25 (2H, m, Ar), 6.22 (1H, d, *J* 10.7, NH), 5.98 (1H, d, *J* 10.7, CHNH), 4.95 (1H, d, *J* 12.1, CO₂CH_AH_B), 4.91 (1H, d, *J* 12.1, CO₂CH_AH_B); ¹³C NMR (100 MHz; CDCI₃): δ_{c} 154.7 (CO₂CH₂), 136.5 (**C**, Ar), 135.5 (**C**, Ar), 134.1 (**C**H, Ar), 129.9 (**C**H, Ar), 129.8 (**C**, Ar), 129.4 (CH, Ar), 129.0 (CH, Ar), 128.8 (CH, Ar), 128.8 (CH, Ar), 128.6 (CH, Ar), 128.4 (CH, Ar), 128.2 (CH, Ar), 74.6 (NHCH), 67.7 (CO₂CH₂).

Step 2

Anhydrous potassium carbonate (3.17 g, 22.8 mmol, 6.00 equiv) was placed under vacuum and flame-dried. Once cool, sulphone (3.8 mmol, 1.0 equiv) was added under nitrogen, followed by tetrahydrofuran (42 mL). The reaction mixture was refluxed for 15 hours and then cooled to ambient temperature. The solids were removed via filtration through a fine, glass sinter and the filtrate was concentrated *in vacuo* to yield essentially pure imine **4** in quantitative yield:

Benzylidene-carbamic acid benzyl ester 4

¹H NMR (500 MHz; CDCl₃): δ_{H} 8.79 (1H, s, PhCHN), 7.77-7.76 (2H, m, Ph), 7.43-7.39 (1H, m, Ph), 7.33-7.30 (4H, m, Ph), 7.26-7.20 (3H, m, Ph), 5.18 (1H, s, PhCH₂); ¹³C NMR (125 MHz; CDCl₃): δ_{c} 171.7 (NCO₂), 164.1 (PhCN), 135.8 (CH, Ph), 134.4 (CH, Ph), 134.4 (CH, Ph), 134.3 (CH, Ph), 131.0 (CH, Ph), 130.7 (CH, Ph), 129.4 (CH, Ph), 129.0 (CH, Ph), 69.3 (CO₂CH₂).

General procedure for the addition of 1,3-dicarbonyls to N-acyl imines

To a solution of imine (0.1 mmol, 1 eq) and catalyst **1** (5.6 mg, 0.01 mmol, 0.1 eq) in toluene (0.4 mL) at -78 °C was added 1,3-dicarbonyl (0.4 mmol, 4 eq). After three days the reaction was observed to have gone to completion, volatiles were removed *in vacuo* and the residue was purified by flash column chromatography eluting with hexane / acetone (100 / 1 to 3 / 1). This method was used to prepare:

31 mg, 0.10 mmol, 100% from benzaldehyde *N*-(*tert*-butoxycarbonyl)imine **3** and acetyl acetone **2** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL OG, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 11.96 (4263.33 mAu s), 13.73 min (413.97 mAu s) gives 82% ee; Mpt. 171 - 173 °C; $[\alpha]_D^{25}$ -26.22 (*c* 0.45, CHCl₃); ¹H NMR (400 MHz; CDCl₃): δ_H 7.34-7.22 (5H, m, Ph), 5.77 (1H, s, br, NH), 5.29 (1H, s, br, NHCH), 4.20 (1H, d, *J* 5.9, NHCHCH), 2.18 (3H, s, CH(COCH₃)_A), 2.11 (3H, s, CH(COCH₃)_B), 1.39 (9H, s, C(CH₃)₃).

2-Acetyl-3-oxo-1-phenyl-butylcarbamic acid benzyl ester 7

25 mg, 0.07 mmol, 73% from benzaldehyde *N*-(benzyloxycarbonyl)imine **4** and acetyl acetone **2** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL OG, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 13.73 (3248.8 mAu s), 15.94 min (92.24 mAu s) gives 86% ee; Mpt. 100 - 101 °C; $[\alpha]_D^{25}$ +3.05 (*c* 0.95, CHCl₃); IR (film) / cm⁻¹ υ_{max} = 3327 (br, N-H), 1697 (C=O), 1603 (Ar), 1497 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_{H} 7.39-7.23 (10H, m, Ar), 6.09 (1H, s, br, NH), 5.54 (1H, s, br, CHNH), 5.07 (2H, s, CH₂), 4.24 (1H, d, *J* 5.4, NHCHCH), 2.17 (3H, s, (CH₃)_A) 2.10 (3H, s, (CH₃)_B); ¹³C NMR (100 MHz; CDCl₃): δ_c 204.3 (CH(COCH₃)_A), 202.1 (CH(COCH₃)_B), 155.8 (COOCH₂),

139.4 (NHCHC, Ar), 136.1 (OCH₂C), 128.8 (CH, Ar), 128.4 (CH, Ar), 128.1 (CH, Ar), 127.9 (CH, Ar), 127.8 (CH, Ar), 126.3 (CH, Ar), 71.5 (CHCOCH₃), 67.1 (OCH₂), 54.3 (NHCH), 30.5 ((CH₃)_A), 30.0((CH₃)_B); m/z (ESI-NH₄⁺) 357.1807; $C_{20}H_{25}N_2O_4^+$ requires 357.1809.

2-Acetyl-3-oxo-1-phenyl-butylcarbamic acid ethyl ester 8

29 mg, 0.1 mmol, 100% from benzaldehyde *N*-(ethoxycarbonyl)imine **5** and acetyl acetone **2** as a white solid. Mpt. 87 - 88 °C; $[\alpha]_D^{25}$ -6.50 (*c* 1.17, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3321 (br, N-H), 1697 (C=O), 1603 (Ar), 1506 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_H 7.35-7.22 (5H, m, Ar), 5.95 (1H, s, br, NH), 5.51 (1H, s, br, CHNH), 4.22 (1H, d, *J* 6.7, NHCHCH), 4.07 (1H, q, *J* 7.1, OCH₂CH₃), 2.18 (3H, s, (CH₃)_A), 2.11 (3H, s, (CH₃)_B), 1.20 (3H, t, *J* 7.1, OCH₂CH₃); ¹³C NMR (100 MHz; CDCl₃): δ_c 204.4 (CH(COCH₃)_A), 202.2 (CH(COCH₃)_B), 156.0 (COOCH₂), 139.6 (NHCHC, Ar), 128.9 (NHCHCCH, Ar), 127.8 (NHCHCCHCHCH, Ar), 126.4 (NHCHCCHCH, Ar), 71.5 (CHCOCH₃), 67.1 (OCH₂CH₃), 54.2 (NHCH), 30.5 ((CH₃)_A), 30.0((CH₃)_B), 14.6 (OCH₂CH₃); m/z (ESI-NH₄⁺) 295.1654; C₁₅H₂₃N₂O₄⁺ requires 295.1652.

2-(tert-Butoxycarbonylamino-phenyl-methyl)-malonic acid dimethyl ester 12

34 mg, 0.1 mmol, 100% from benzaldehyde *N*-(*tert*-butoxycarbonyl)imine **3** and dimethyl malonate **9** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 18.52 (14748.1 mAu s), 28.44 min (853.36 mAu s) gives 89% ee; Mpt. 89 - 90 °C; $[\alpha]_D^{25}$ +17.0 (*c* 1.14, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3377 (br, N-H), 1736 (C=O_{ester}), 1717 (C=O_{carbamate}), 1603 (Ar), 1497 (Ar) ; ¹H NMR (400 MHz; CDCl₃): δ_H 7.34-7.22 (5H, m, Ar), 6.13 (1H, s, br, NH), 5.48 (1H, s, br, CHNH), 3.92 (1H, d, *J* 3.0, NHCHCH), 3.74 (3H, s, O(CH₃)_A) 3.64 (3H, s, O(CH₃)_B), 1.42 (9H, s, br, C(CH₃)₃); ¹³C NMR (100 MHz; CDCl₃): δ_c 168.8 (CH(COOCH₃)_A), 167.5 (CH(COOCH₃)_B), 155.1 (COOC(CH₃)₃), 139.1 (NHCHC, Ar), 128.6 (CCHCH, Ar), 127.6 (CCHCHCH, Ar), 126.2 (CC H, Ar), 79.8 (C(CH₃)₃); 56.7 (NHCHCH), 53.3 (NHCH), 52.8 (O(CH₃)_A), 52.5 (O(CH₃)_B), 28.3 (C(CH₃)₃); m/z (ESI-H⁺) 338.1594; C₁₇H₂₄NO₆⁺ requires 338.1598.

2-(tert-Butoxycarbonylamino-phenyl-methyl)-malonic acid diethyl ester 13

35 mg, 0.096 mmol, 96% from benzaldehyde *N*-(*tert*-butoxycarbonyl)imine **3** and diethyl malonate **10** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 14.03 min (7687.93 mAu s), 16.74 min (937.56 mAu s) gives 78% ee; Mpt. = $52 - 53 \, {}^{\circ}$ C; $[\alpha]_{D}^{25}$ = +10.0 (c = 0.74, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3426 (br, N-H), 1718 (C=O), 1496 (Ar) ; ¹H NMR (400 MHz; CDCl₃): δ_{H} 7.33-7.28 (4H, m, Ph_{ortho+meta}), 7.23 (1H, m, Ph_{para}), 6.18 (1H, s, br, NH), 5.49 (1H, s, br, CHNH), 4.19 (2H, dq, *J* 10.2, 7.1, (OCH₂CH₃)_A), 4.08 (2H, dq, *J* 14.0, 7.1, (OCH₂CH₃)_B), 3.88 (1H, d, *J* 3.6, NHCHCH), 1.41 (9H, s, C(CH₃)₃), 1.26 (3H, t, *J* 7.1, (OCH₂CH₃)_B); ¹³C NMR (100 MHz; CDCl₃): δ_{c}

168.0 (CH(COOCH₂CH₃)_A), 167.1 (CH(COOCH₂CH₃)_B), 155.0 (COOC(CH₃)₃), 139.6 (NHCHC, Ar), 128.4 (CCHCH, Ar), 127.4 (CCHCHCH, Ar), 126.2 (CCH, Ar), 79.6 (COOC(CH₃)₃), 61.9 (O(CH₂CH₃)_A), 61.5 (O(CH₂CH₃)_B), 56.9 (NHCHCH), 53.7 (NHCH), 27.7 (C(CH₃)₃), 14.0 (O(CH₂CH₃)_A), 13.8 (O(CH₂CH₃)_B); m/z (ESI-NH₄⁺) 383.2180; C₁₉H₃₁N₂O₆⁺ requires 383.2177;.

2-(tert-Butoxycarbonylamino-phenyl-methyl)-malonic acid di-tert-butyl ester 14

35 mg, 0.096 mmol, 96% from benzaldehyde *N*-(*tert*-butoxycarbonyl)imine **3** and di-tert-butyl malonate 11 as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / I-PrOH (9 / 1, 0.8 ml / min), retention times 9.04 min (8425.35 mAu s), 17.88 min (9776.03 mAu s) gives 7% ee; Mpt. = 60 - 61 °C; $\left[\alpha\right]_{p}^{25}$ = +0.94 (c = 0.96, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3426 (br, N-H), 1717 (C=O), 1497 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_{H} 7.30-7.26 (4H, m, Phortho+meta), 7.25-7.20 (1H, m, Phora), 6.25 (1H, s, br, NH), 5.40 (1H, s, br, CHNH), 3.71 (1H, d, J 3.9, NHCHCH), 1.45 (9H, s, $CH(COOC(CH_3)_3)_A$, 1.42 (9H, s, NHCOOC(CH₃)₃), 1.41 (9H, s, CH(COOC(CH₃)₃)_B); ¹³C NMR (100 MHz; CDCl₃): δ_{c} 167.6 (CH(**C**OOC(CH₃)₃)_A), 166.5 (CH(COOC(CH₃)₃)_B), 155.0 (NHCOOC(CH₃)₃), 140.1 (NHCHC, Ar), 128.3 (CCHCH, Ar), 127.3 (CCHCHCH, Ar), 126.3 (CCH, Ar), 82.6 $(CH(COOC(CH_3)_3)_A)$, 82.3 $(CH(COOC(CH_3)_3)_B)$, 79.3 $(NHCOOC(CH_3)_3)$, 58.5 (NHCHCH), 53.5 (NHCH), 28.4 (CH(COOC(CH₃)₃)_A), 27.8 (CH(COOC(CH₃)₃)_A), 27.7 (NHCOOC(CH_3)₃); m/z (ESI-NH₄⁺) 439.2799; C₂₃H₃₉N₂O₆⁺ requires 439.2803.

32 mg, 0.086 mmol, 86% from benzaldehyde *N*-(benzyloxycarbonyl)imine **4** and dimethyl malonate **9** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 21.06 (55676.8 mAu s), 31.14 min (2370.80 mAu s) gives 92% ee; Mpt. 69 - 70 °C; $[\alpha]_D^{25}$ +9.4 (*c* 1.0, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3324 (br, N-H), 1734 (C=O), 1498 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_H 7.36-7.27 (10H, m, Ar), 6.44 (1H, d, *J* 7.4, NH), 5.55 (1H, dd, *J* 7.4, 3.4, NHCH), 5.12 (1H, d, *J* 12.2, COOCH_AH_B), 5.08 (1H, d, *J* 12.2, COOCH_AH_B), 3.94 (1H, d, *J* 3.4, NHCHCH), 3.70 (3H, s, O(CH₃)_A) 3.63 (3H, s, O(CH₃)_B); ¹³C NMR (100 MHz; CDCl₃): δ_c 168.3 (CH(COOCH₃)_A), 167.3 (CH(COOCH₃)_B), 155.7 (COOCH₂C₆H₅), 139.0 (NHCHC, Ar), 128.5 (OCH₂CCHCHCH, Ar), 128.1 (OCH₂CCHCH, Ar), 128.5 (NHCHCCHCHCH, Ar), 128.5 (OCH₂CCHCHCH, Ar), 66.9 (OCH₂), 56.5 (NHCHCH), 54.0 (NHCH), 52.9 (O(CH₃)_A), 52.6 (O(CH₃)_B); m/z (ESI-H⁺) 372.1454; C₂₀H₂₂NO₆⁺ requires 372.1447.

2-(tert-Butoxycarbonylamino-furan-2-yl-methyl)-malonic acid dimethyl ester 18a

31 mg, 0.095 mmol, 95% from 2-furanaldehyde *N*-(*tert*-butoxycarbonyl)imine **16a** and dimethyl malonate **9** as a colourless oil. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 11.91 min (40471.7 mAu s), 18.1 min (1171.37 mAu s) gives 94% ee; $[\alpha]_{D}^{25}$ = +3.0 (c = 0.83, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3423 (br, N-H), 1720 (C=O), 1497 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_{H} 7.31 (1H, d, *J* 1.8, COCHCHCH), 6.29 (1H, dd, *J* 3.2, 1.8, COCHCHCH), 6.22 (1H, d, *J* 3.2, COCHCHCH), 5.83 (1H, s, br, NH), 5.53 (1H, d *J* 4.5, NHCH), 4.04 (1H, d, *J* 4.5, NHCHCH), 3.75 (3H, s, O(CH₃)_A), 3.72 (3H, s, O(CH₃)_B), 1.44 (9H, s, C(CH₃)₃); ¹³C NMR (100 MHz; CDCl₃): δ_{c} 168.2 (CH(COOCH₃)_A), 167.3 (CH(COOCH₃)_B), 155.0 (COOC(CH₃)₃), 152.2 (OCCHCHCH), 142.1 (OCCHCHCH), 110.5 (OCCHCHCH), 106.7 (OCCHCHCH), 80.0 (COOC(CH₃)₃); 54.1 (NHCHCH), 52.9 (O(CH₃)_A), 52.6 (O(CH₃)_B), 48.3 (NHCH), 28.3 (C(CH₃)₃); m/z (ESI-H⁺) 328.1406; C₁₅H₂₂NO₇⁺ requires 328.1396.

2-(tert-Butoxycarbonylamino-naphthalen-2-yl-methyl)-malonic acid dimethyl ester 18b

33 mg, 0.085 mmol, 85% from 2-naphthaldehyde *N-(tert-*butoxycarbonyl)imine **16b** and dimethyl malonate **9** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 26.31 (15263.9 mAu s), 30.39 min (282.33 mAu s) gives 96% ee; Mpt. = 139 - 140 °C; $[\alpha]_D^{25}$ = -1.28 (c = 1.1, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3421 (br, N-H), 1735 (C=O_{ester}), 1717 (C=O_{carbamate}), 1601 (Ar), 1497 (Ar); ¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ 7.84-7.79 (3H, m, Ar), 7.76 (1H, s, NHCHCC**H**C), 7.50-7.44 (2H, m, Ar), 7.42 (1H, dd, *J* 8.6, 1.8, NHCHCC**H**CH), 6.28 (1H, s, br, NH), 5.66 (1H, s, NHCH), 4.04 (1H, d, *J* 3.2, NHCHCH), 3.76 (3H, s, O(CH₃)_A) 3.61 (3H, s, O(CH₃)_B), 1.43 (9H, s, br, C(CH₃)₃); ¹³C NMR (100 MHz; CDCl₃): δ_c 168.4 (CH(COOCH₃)_A), 167.5 (CH(COOCH₃)_B), 155.1 (COOC(CH₃)₃), 136.9 (NHCHC, Ar), 133.2 (NHCHCCHC, Ar), 132.8 (NHCHCCHCHC, Ar), 128.4 (NHCHCCHCHC, Ar), 128.0 (NHCHCCHCCHCH, Ar), 127.5 (NHCHCCHCCHC, Ar), 126.2 (NHCHCCHCHC, Ar), 126.0 (NHCHCCHCCHC, Ar), 125.1 (NHCHCCHCCHCH, Ar), 124.1 (CCHCCHCHCH, Ar), 79.9 (C(CH₃)₃), 56.6 (NHCHCH), 53.6 (NHCH), 52.9 (O(CH₃)_A), 52.5 (O(CH₃)_B), 28.3 (C(CH₃)₃); m/z (ESI-H⁺) 388.1763; C₂₁H₂₆NO₆⁺ requires 388.1760.

2-[tert-Butoxycarbonylamino-(4-chloro-phenyl)-methyl]-m a l o n i c a c i d dimethyl ester 18c

32 mg, 0.085 mmol, 85% from 4-chlorobenzaldehyde *N*-(*tert*-butoxycarbonyl)imine **16c** and dimethyl malonate **9** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 20.85 min (122.15 mAu s), 25.84 min (7756.55 mAu s) gives 97% ee; Mpt. = 88 - 89 °C; $[\alpha]_D^{25}$ = +15.4 (c = 0.36, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3417 (br, N-H), 1736 (C=O_{ester}), 1717 (C=O_{carbamate}), 1597 (Ar), 1492 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_H 7.29 (2H, d, *J* 8.4, 2 x CICCHCHC), 7.23 (2H, d, *J* 8.4, 2 x CICCHCHC), 6.13 (1H, s, br, NH), 5.44 (1H, s, br, NHCH), 3.93 (1H, d, *J* 2.9 NHCHCH), 3.75 (3H, s, O(CH₃)_A), 3.65 (3H, s, O(CH₃)_B), 1.41 (9H, s, C(CH₃)_B), 155.0 (COOC(CH₃)₃), 144.1 (CICCHCHC), 138.0 (CICCHCH), 128.8 (CICCHCH), 127.7 (CICCHCH), 80.0

 $(COOC(CH_3)_3)$, 56.5 (NHCHCH), 52.9 (NHCH), 52.9 $(O(CH_3)_A)$, 52.6 $(O(CH_3)_B)$, 28.2 $(C(CH_3)_3)$; m/z (ESI-H⁺) 372.1210; C₁₇H₂₃NO₆Cl⁺ requires 372.1214.

2-[tert-Butoxycarbonylamino-(3-methoxy-phenyl)-methyl]-malonic acid dimethyl ester –18d

0.089 mmol, 89% from 3-methoxy-benzaldehyde N-(tert-33 ma. butoxycarbonyl)imine **16d** and dimethyl malonate **9** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / i-PrOH (9 / 1, 0.8 ml / min), retention times 31.89 (10893.5 mAu s), 36.00 min (710.35 mAu s) gives 88% ee; Mpt. = 79 - 80 °C; $\left[\alpha\right]_{D}^{25}$ = +12.94 (c = 1.43, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3414 (br, N-H), 1737 (C=O_{ester}), 1716 $(C=O_{carbamate})$, 1601 (Ar), 1587 (Ar), 1497 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_{H} ; 7.23 (1H, t, J 7.9, NHCHCCHCH), 6.85 (1H, d, J 7.7, NHCHCCHCH), 6.84 (1H, d, J 2.3, NHCHCCHCOCH₃), 6.79 (1H, dd, J 8.1, 2.3, NHCHCCHCHCH), 6.12 (1H, s, br, NH), 5.45 (1H, s, br, NHCH), 3.92 (1H, d, J 3.5, NHCHCH), 3.78 (3H, s, NHCHCCHCOCH₃) 3.74 (3H, s, CH(COOCH₃)_A), 3.65 (3H, s, CH(COOCH₃)_B), 1.42 (9H, s, br, C(CH₃)₃); ¹³C NMR (100 MHz; CDCl₃): δ_c 168.4 $(CH(COOCH_3)_A)$, 167.5 $(CH(COOCH_3)_B)$, 159.8 $(CCHCOCH_3)$, 155.1 (COOC(CH₃)₃), 141.1 (NHCHC, Ar), 129.7 (NHCHCCHCH, Ar), 118.4 (NHCHCCHCH, Ar), 113.0 (CCHCOCH₃, Ar), 112.1 (NHCHCCHCHCH, Ar), 79.8 (**C**(CH₃)₃), 56.6 (NHCH**C**H), 55.2 (CCHCO**C**H₃), 53.4 (NH**C**H), 52.9 $(CH(COOCH_3)_A)$, 52.5 $(CH(COOCH_3)_B)$, 28.3 $(C(CH_3)_3)$; m/z $(ESI-H^+)$ 368.1709; $C_{18}H_{26}NO_7^+$ requires 368.1709.

2-(Benzyloxycarbonylamino-furan-2-yl-methyl)-malonic acid dimethyl ester –19a

36 mg, 0.096 mmol, 96% from 2-furanaldehyde *N*-(benzyloxycarbonyl)imine **17a** and dimethyl malonate **9** as a colourless oil. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 26.61 min (7055.17 mAu s), 18.1 min (122.08 mAu s) gives 97% ee; $[\alpha]_D^{25} = -2.66$ (c = 1.24, CHCl₃); IR (film) / cm⁻¹ $v_{max} = 3420$ (br, N-H), 1726 (C=O), 1499 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_H 7.36-7.28 (5H, m, Ar), 7.32 (1H, dd, *J* 1.8, 0.6, NHCHCOCH), 6.30 (1H, dd, *J* 3.2, 1.8, NHCHCOCHCH), 6.22 (1H, d, *J* 3.2, NHCHCCCH), 6.17 (1H, d, *J* 9.3, NH), 5.60 (1H, dd, *J* 9.3, 4.5, NHCH), 5.13 (2H, s, COOCH₂), 4.05 (1H, d, *J* 4.5, NHCHCH), 3.70 (6H, s, 2 x OCH₃); ¹³C NMR (100 MHz; CDCl₃): δ_c 168.1 (CH(COOCH₃)_A), 167.0 (CH(COOCH₃)_B), 155.7 (COOCH₂C₆H₅), 151.7 (OCCHCHCH), 142.2 (OCHCHCH), 136.3 (OCH₂C, Ar) 128.4 (OCH₂CCHCH, Ar), 128.0 (OCH₂CCH, Ar), 128.0 (OCH₂CCHCHCH), 110.5 (OCCHCH), 106.7 (OCCH), 67.1 (CH₂C₆H₅), 53.9 (NHCHCH), 52.9 (O(CH₃)_A), 52.7 (O(CH₃)_B), 48.8 (NHCH); m/z (ESI-Na⁺) 384.1057; C₁₈H₁₉NO₇Na⁺ requires 384.1059.

2-(Benzyloxycarbonylamino-pyridin-3-yl-methyl)-malonic acid dimethyl ester – 19b

30 mg, 0.081 mmol, 81% from 3-pyridine carboxyaldehyde N-(benzyloxycarbonyl)imine **17b** and dimethyl malonate **9** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 20.32 (463.68 mAu s), 25.03 min (5072.91 mAu s) gives 83% ee; Mpt. = 74 - 75 °C; $\left[\alpha\right]_{D}^{25}$ = +9.33 (c = 1.35, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3322 (br, N-H), 1724 (C=O), 1578 (Ar), 1503 (Ar); ¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ 8.58 (1H, s, NHCHCC**H**N), 8.53 (1H, d, J 4.0, NHCHCCHNCH), 7.65 (1H, d, J 7.9, NHCHCCHCH), 7.34 (5H, m, Ar), 7.25 (1H, dd, J 7.9, 4.0, NHCHCCHCH), 6.47 (1H, d, J 7.7, NH), 5.57 (1H, dd, J 7.7, 3.2, NHCH), 5.10 (1H, d, J 12.2, COOCH_AH_B), 5.07 (1H, d, J 12.2, COOCH_AH_B), 3.93 (1H, d, J 3.2, NHCHCH), 3.71 (3H, s, O(CH₃)_A) 3.65 (3H, s, $O(CH_3)_B$; ¹³C NMR (100 MHz; CDCl₃): δ_c 168.0 (CH(**C**OOCH₃)_A), 166.9 $(CH(COOCH_3)_B)$, 155.6 $(COOCH_2C_6H_5)$, 149.3 (NHCHCCHN), 148.1 (NHCHCCHNCH), 136.1 (OCH₂C, Ar), 134.7 (NHCHCCHN), 134.2 (NHCHCCHCH), 128.5 (OCH₂CCHCH, Ar), 128.2 (OCH₂CCHCHCH, Ar), 128.1 (OCH₂CCH, Ar), 123.4 (NHCHCCHCH), 67.2 (OCH₂), 56.1 (NHCHCH), 53.1 $(O(CH_3)_A)$, 52.8 $(O(CH_3)_B)$, 52.1 (NHCH); m/z $(ESI-H^+)$ 373.1399; $C_{19}H_{21}N_2O_6^+$ requires 373.1400.

2-(Benzyloxycarbonylamino-naphthalen-1-yl-methyl)-malonic acid dimethyl ester – 19c

42 mg, 0.10 mmol, 100% from 1-naphthaldehyde *N*-(benzyloxycarbonyl)imine **17c** and dimethyl malonate **9** as a colourless oil. Analytical Chiral HPLC (Daicel

CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 30.11 (21908.8 mAu s), 36.91 min (297.56 mAu s) gives 83% ee; $\left[\alpha\right]_{p}^{25}$ = +40.26 (c = 1.95, CHCl₃); IR (film) / cm⁻¹ v_{max} = 3413 (br, N-H), 1723 (C=O), 1600 (Ar), 1506 (Ar), 1500 (Ar); m/z (ESI-H⁺) 422.1600; ¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ 8.14 (1H, d, J 8.4, NHCHCCCH), 7.89 (1H, d, J 7.9, NHCHCCCHCHCHCH), 7.79 (1H, d, J 8.1, NHCHCCHCHCH), 7.61 (1H, t, J 7.7, NHCHCCCHCH), 7.53 (1H, t, J 7.9, NHCHCCCHCHCH), 7.49 (d, J 7.5, NHCHCCHCHCH), 7.43 (1H, dd, J 7.9, 7.5, NHCHCCHCH), 7.36-7.32 (5H, m, Ar), 6.87 (1H, d, J 9.2, NH), 6.38 (1H, dd, J 9.2, 3.7, NHCH), 5.12 (1H, d, J 15.3, OCH_AH_B), 5.09 (1H, d, J 15.3, OCH_AH_B), 4.12 (1H, d, J 3.7, NHCHCH), 3.78 $(3H, s, O(CH_3)_A)$ 3.55 $(3H, s, O(CH_3)_B)$; ¹³C NMR (100 MHz; CDCl₃): δ_c 168.5 (CH(COOCH₃)_A), 167.6 (CH(COOCH₃)_B), 155.7 (COOCH₂C₆H₅), 136.5 (OCH₂C, Ar), 134.5 (NHCHC, Ar), 133.9 (NHCHCCC, Ar), 130.0 (NHCHCC, Ar), 129.1 (NHCHCCCHCHCH**C**H, Ar), 128.6 (OCH₂CCH**C**H, Ar), 128.4 (NHCHCCHCHCH, Ar), 128.0 (OCH₂CCHCHCH, Ar), 126.9 (CH, Ar), 126.9 (CH, Ar), 125.8 (OCH₂CCH, Ar), 125.1 (NHCHCCCHCH), 123.6 (NHCHCCCHCHCH), 122.0 (NHCHCCCH, Ar), 67.0 (OCH₂), 56.2 (NHCHCH), 53.1 (O(CH₃)_A), 52.5 (O(**C**H₃)_B), 50.7 (NH**C**H); C₂₄H₂₄NO₆⁺ requires 422.1604.

2-(Benzyloxycarbonylamino-2-chloro-phenyl-methyl)-malonic acid dimethyl ester – 19d

38 mg, 0.093 mmol, 93% from 2-chlorobenzaldehyde N-(benzyloxycarbonyl)imine **17d** and dimethyl malonate **9** as a colourless oil Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 17.20 (23.20 mAu s), 23.28 min (938.18 mAu s) gives 97% ee; $[\alpha]_D^{25} = +32.60$ (c = 1.31, CHCl₃); IR (film) / cm⁻¹ $v_{max} = 3416$ (br, N-H), 1726 (C=O), 1601 (Ar), 1587 (Ar), 1499 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_{H} ; 7.38-7.30 (6H, m, Ar), 7.25-7.20 (3H, m, Ar), 6.70 (1H, d, J 8.8, NH), 5.86 (1H, dd, J 8.8, 4.1, NHCH), 5.12 (1H, d, J 12.5, OCH_AH_BC₆H₅), 5.07 (1H, d, J 12.5, OCH_AH_BC₆H₅), 4.15 (1H, d, J 4.1, NHCHCH), 3.73 (3H, s, CH(COOCH₃)_A), 3.60 (3H, s, CH(COOCH₃)_B); ¹³C NMR (100 MHz; CDCl₃): δ_{c} 168.5 (CH(COOCH₃)_A), 167.3 (CH(COOCH₃)_B), 155.5 (COOCH₂C₆H₅), 136.3 (C, Ar), 136.2 (C, Ar), 132.4 (C, Ar), 129.9 (CH, Ar), 129.2 (CH, Ar), 129.5 (CH, Ar), 128.1 (CH, Ar), 128.1 (CH, Ar), 127.8 (CH, Ar), 127.0 (CH, Ar), 66.9 (OCH₂C₆H₅), 53.6 (NHCH), 52.9 (CH(COOCH₃)_A), 52.5 (CH(COOCH₃)_B), 51.6 (CH(COOCH₃)₂); m/z (ESI-H⁺) 406.0982; C₂₀H₂₁CINO₆⁺ requires 406.0979.

1-(tert-Butoxycarbonylaminophenylmethyl)-2-oxocyclopentanecarboxylicac id methyl ester 21a -Major diastereomer

24.3 mg, 0.07 mmol, 70% from *N*-(*tert*-butoxycarbonyl)imine **3** and methyl cyclopentanone carboxylate **20** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (98 / 2, 0.8 ml / min), retention times of major diastereomer 12.82 (27411.0 mAu s), 14.96 min (2315.16 mAu s) gives 85% ee; Mpt. 64 - 66 °C; IR (film) / cm⁻¹ v_{max} = 3387 (br, N-H), 1753 (C=O_{ester}) 1716 (C=O_{ketone}), 1700 (C=O_{carbamate}), 1496 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_{H} 7.30–7.29 (4H, m, Ph_{ortho+meta}), 7.25-7.23 (1H, m, Ph_{para}), 6.71 (1H, s, br, NH), 5.33 (1H, d, *J* 9.4, NHCH), 3.65 (3H, s, COOCH₃), 2.57-2.52 (1H, m, CCOCH_AH_B), 2.21 (1H, ddd, *J* 18.5, 8.7, 5.9, CCH_AH_B), 2.05 (1H, dt, *J*, 13.8, 7.7, COCH_AH_B), 1.88 (1H, dt, *J* 18.5, 8.4, CCH_AH_B), 1.80-1.71 (1H, m, COCH₂CH_AH_B), 1.6-1.45 (1H, m, COCH₂CH_AH_B); ¹³C NMR (100 MHz; d₆-DMSO,

120 °C): $\delta_c 211.2$ (CCOCH₂), 169.5 (CCOOCH₃), 155.2 (COOC(CH₃)₃), 139.7 (C, Ph_{ipso}), 128.5 (CH, Ph), 128.3 (CH, Ph), 127.7 (CH, Ph_{para}), 79.0 (OC(CH₃)₃), 65.8 (NHCHCCO), 57.4 (NHCH), 52.6 (CCOOCH₃), 38.1 (CCOCH₂), 29.2 (CCH₂), 28.7 (OC(CH₃)₃), 19.0 (COCH₂CH₂); m/z (ESI-Na⁺) 370.1628; C19H₂₅NO₅Na⁺ requires 370.1630.

1-(tert-Butoxycarbonylamino-naphthalen-2yl)-2-oxocyclopentane carboxylicacid methyl ester 21b -Major diastereomer

66 mg, 0.166 mmol, 83% from 2-naphthaldehyde *N*-(*tert*-butoxycarbonyl)imine **16b** and methyl cyclopentanone carboxylate **20** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / i-PrOH (98 / 2, 0.8 ml / min), retention times of major diastereomer 12.12 (8494 mAu s), 37.70 min (119483 mAu s) gives 87% ee; Mpt. 139 - 140 °C; IR (film) / cm⁻¹ v_{max} = 3444 (br, N-H), 1751 (C=O_{ester}) 1714 (C=O_{ketone}), 1698 (C=O_{carbamate}), 1494 (Ar); ¹H NMR (400 MHz; CDCl₃): $\delta_{\rm H}$ 7.81-7.75 (4H, m, Ar), 7.49-7.43 (3H, m, Ar), 6.07 (1H, s, br, NH), 5.38 (1H, d, J 9.3, NHCH), 3.68 (3H, s, COOCH₃), 2.54 (1H, dt, J 13.5, 6.8, CCOCH_AH_B), 2.36-2.28 (2H, m, CCH₂), 2.06 (1H, dt, J, 13.5, 6.9, COCH_AH_B), 2.00-1.89 (2H, m, COCH₂CH₂); ¹³C NMR (100 MHz; CDCl₃): δ_c 210.9 (CCOCH₂), 169.9 (CCOOCH₃), 155.3 (COOC(CH₃)₃), 135.8 (NHCHCCH), 133.0 (C, Ar), 132.8 (C, Ar), 128.1 (CH, Ar), 128.0 (CH, Ar), 127.4 (CH, Ar), 127.3 (CH, Ar), 126.1 (CH, Ar), 126.1 (CH, Ar), 125.7 (CH, Ar), 79.9 (OC(CH₃)₃), 65.0 (NHCHCCO), 56.0 (NHCH), 52.7 (CCOOCH₃), 37.6 (CCOCH₂), 30.8 (CCH₂), 28.3 (OC(CH_3)₃), 18.8 (COCH₂ CH_2); m/z (ESI-H⁺) 397.1886; C₂₈H₂₈NO₅⁺ requires 397.1889.

1-(tert-Butoxycarbonylamino-furan-2-yl-methyl)-2-oxocyclopentane carboxylicacid methyl ester 21c -Major diastereomer

65 mg, 0.194 mmol, 97% from 2-furanaldehyde N-(tert-butoxycarbonyl)imine 16a and methyl cyclopentanone carboxylate 20 as a colourless oil. Analytical Chiral HPLC (Daicel CHIRALCEL AD, 25 cm x 0.46 cm dia., 215nm), hexane / i-PrOH (9 / 1, 0.8 ml / min), retention times of major diastereomer 12.04 (708.82 mAu s), 19.13 min (8354.13 mAu s) gives 84% ee; Mpt 64 - 66 °C; IR (film) / cm⁻¹ v_{max} = 3377 (br, N-H), 1753 (C=O_{ester}) 1725 (C=O_{ketone+carbamate}), 1494 (Ar); ¹H NMR (400 MHz; CDCl₃): δ_H 7.29 (1H, dd, J 1.8, 1.0, NHCHCOC**H**), 6.28 (1H, dd, J 3.2, 1.8, NHCHCOCHCH), 6.20 (1H, d, J 3.2, NHCHCCH), 5.61 (1H, s, br, NH), 5.36 (1H, d, J 10.2, NHCH), 3.71 (3H, s, COOCH₃), 2.58 (1H, dt, J 13.9, 7.2, CCOCH_AH_B), 2.35-2.28 (2H, m, CCH₂), 2.07-1.99 (1H, m, COCH_AH_B), 1.98-1.89 (2H, m, $COCH_2CH_2$), 1.41 (9H, s, $C(CH_3)_3$); ¹³C NMR (100 MHz; $CDCI_3$): δ_c 210.5 (CCOCH₂), 169.6 (CCOOCH₃), 155.2 (COOC(CH₃)₃), 151.7 (NHCHCO), 141.8 (NHCHCOCH), 110.4 (NHCHCOCHCH), 108.0 (NHCHCCH), 70.0 (OC(CH₃)₃), 64.3 (NHCHCCO), 52.8 (CCOOCH₃), 50.6 (NHCH), 37.6 (CCOCH₂), 30.6 (CCH₂), 28.2 (OC(CH₃)₃), 18.9 (COCH₂CH₂); m/z (ESI-H⁺) 337.1524; C₁₇H₂₄NO₆⁺ requires 337.1525.

Method for dealkyl decarboxylation

In an NMR tube **12** or **15** was dissolved in d₆-DMSO (0.5 mL). 1 drop of water was added and the reaction vessel was heated at 160 $^{\circ}$ C for 12 hours. After the reaction was observed to have gone to completion by NMR, the reaction was purified by flash column chromatography eluting with hexane / acetone (100 / 1 to 3 / 1). This method was use to prepare:

10.8 mg, 0.038 mmol, 68%, from **13** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL OD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 8.10 (167.57 mAu s), 9.16 min (2894.96 mAu s) gives 89% ee; Mpt 72 °C; $[\alpha]_D^{25}$ -23.3 (*c* 0.40, CHCl₃); ¹H NMR (400 MHz; CDCl₃): δ_H 7.35-7.24 (5H, m, Ph), 5.43 (1H, s, br, NH), 5.10 (1H, s, br, NHCH), 3.61 (3H, s, COOCH₃), 2.87 (1H, dd, *J* 15.3, 5.2 NHCHCH_AH_B), 2.81 (1H, dd, *J* 15.3, 5.8. NHCHCCH_AH_B), 1.42 (9H, s, C(CH₃)₃).

3-Benzyloxycarbonylamino-3-phenyl-propionic acid methyl ester 23^{3b}

14.8 mg, 0.047 mmol, 90%, from **16** as a white solid. Analytical Chiral HPLC (Daicel CHIRALCEL OD, 25 cm x 0.46 cm dia., 215nm), hexane / *i*-PrOH (9 / 1, 0.8 ml / min), retention times 19.76 (3891.02 mAu s), 24.82 min (165.58 mAu s) gives 92% ee; Mpt. 58 - 60 °C; $[\alpha]_D^{25}$ -13.7 (*c* 0.19, CHCl₃); ¹H NMR (400 MHz; CDCl₃): δ_H 7.35-7.24 (10H, m, Ph), 5.73 (1H, s, br, NH), 5.16 (1H, dd, *J* 5.9, 5.3, NHCH), 5.12 (1H, d, *J*, 12.3, NHCOOCH_AH_B), 5.08 (1H, d, *J* 12.3, NHCOOCH_AH_B), 3.60 (3H, s, COOCH₃), 2.89 (1H, dd, *J* 15.4, 5.2, NHCHCH_AH_B), 2.83 (1H, dd, *J* 15.4, 5.9, NHCHCH_AH_B).

References

- 1. A.G. Wenzel, E.N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 12964-12965
- 2. D. Uraguchi, M. Terada, J. Am. Chem. Soc. 2004, 126, 5356-5357
- a) F. A. Davis, J. M. Szewczyk, *Tetrahedron Lett*. 1998, **39**, 5951-5954. b) L. Crombie, D. Haigh, R. C. F. Jones, A. R. Mat-Zin, *J. Chem. Soc. Perkin Trans.* **1**, 1993, 2047-2054.

HPLC analysis

Analytical chiral HPLC data was obtained using Daicel CHIRALCEL AD, OG or OD columns (25 cm x 0.46 cm dia., at wavelengths specified in the traces below). For compounds **6**, **12-15**, **18-19** the traces were obtained using a Daicel CHIRALCEL AD column eluting with hexane / *i*-PrOH (9 / 1, 0.8 ml / min). For compound **7** the traces were obtained using a Daicel CHIRALCEL OG column eluting with hexane / *i*-PrOH (9 / 1, 0.8 ml / min). For compounds **21** the traces were obtained using a Daicel CHIRALCEL OG column eluting a Daicel CHIRALCEL AD column eluting with hexane / *i*-PrOH (98 / 2, 0.8 ml / min). For compounds **22** and **23** the traces were obtained using a Daicel CHIRALCEL OD column eluting with hexane / *i*-PrOH (9 / 1, 0.8 ml / min).

Table 1 – Entry 2

Table 1 - Entry 5

#	lurul		[min]	[mAU*s]	[mAU]	8
1	14.004	MF	0.6775	190.15697	4.67815	48.9075
2	16.140	FM	0.8002	198.65263	4.13776	51.0925

Table 2 – Entry 1

12.13405

5.4698

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	19.875	MM	1.0049	6057.70264	100.47092	50.0894
2	25.708	MM	1.2879	6036.07422	78.11353	49.9106

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	13.996	BB	0.5014	2309.57837	57.79316	50.0357
2	16.661	BB	0.5800	2306.28076	47.16818	49.9643

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	9.043	BB	0.4047	8425.35156	315.20044	46.2896
2	17.881	BB	0.7137	9776.03320	180.90126	53.7104

#	[min]		[min]	[mAU*s]	[mAU]	Ried 8	
1	9.090	VB	0.3967	4688.23877	176.28735	50.1397	
2	18.031	PB	0.6619	4662.10889	86.78384	49.8603	

#	[min]	[min]	[mAU*s]	[mAU]	8
	 	-			
1	11.936 MM	0.5766	2057.29272	59.46577	52.0160
2	18.107 MM	0.8665	1897.82056	36.50247	47.9840

Table 3 – Entry 2

Table 3 – Entry 3

.

2	ົ
J	υ

Table 3 – Entry 4

Table 3 – Entry 5

2

44.902 MM

32.91759

51.1225

2.3904 4721.19922

Table 3 – Entry 6

# [min] [min] [mAU*s]	[mAU]	RIEd 8
1 20.170 MF 1.0743 4120.44727 (63.92307	50,6027
2 25.092 FM 1.4436 4022.30029	46.43672	49.3973

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	१
1 2	17.383 23.845	MF FM	0.8333 1.1800	1.09782e4 1.10521e4	219.57062 156.09680	 49.8324 50.1676

Table 4 – Entry 1

Peak #	RetTime	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.120	MF	0.6759	2.07833e4	512.45435	49.9860
2	14.919	FM	0.7427	2.07949e4	466.64969	50.0140

Table 4 – Entry 2

Table 4 – Entry 3

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.995	MF	0.6040	1.11991e4	309.01361	46.4756
2	13.013	FM	0.5182	1022.50702	32.88592	4.2433
3	13.525	FM	0.6362	1177.65735	30.84894	4.8872
4	19.149	MM	0.9821	1.06975e4	181.54449	44.3939

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area १
1	8.095	MF	0.2556	167,57359	10.92638	5.4717
2	9.158	FM	0.3151	2894.95728	153.13329	94.5283

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] ક્ર 7.494 MF 0.2650 8159.86865 1 513.13782 49.6717 0.2970 8267.74609 464.03146 2 8.412 FM 50.3283

Scheme 5 - 24

