Supporting information for Chemical Communication

Large-scale synthesis of alkyne-linked tripodal porphyrins via palladiummediated coupling conditions

Lok H. Tong, Sofia I. Pascu, Thibaut Jarrosson and Jeremy K. M. Sanders*

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK, Fax: +44 1223 336017; Tel: +44 1223 336411; E-mail: jkms@cam.ac.uk

General Procedures

3.5-di-*tert*-butylbenzaldehyde¹ and the linkers 2^2 and 3^3 were prepared according to the published procedures. All other chemicals were purchased from Aldrich or Avocado in reagent grade quality or better and used without further purification. All ¹H NMR measurements were carried out at room temperature in deuterochloroform and recorded on a Bruker DRX-500 instrument. Chemical shifts are quoted in parts per million with reference to residual protons of the deuterated solvent for the ¹H. The coupling constants are reported in hertz (Hz). Triethylamine (Et_3N) and dichloromethane (CH_2Cl_2) were distilled from CaH₂ under argon. Pyrrole was freshly distilled before use. Preparative thin layer chromatography was carried out on silica gel plates loaded with Merck silica gel 60 PF₂₅₄. Column chromatography was performed on Merck 60 silica gel (230–400 mesh). Matrix Assisted Laser Desorption Ionisation Time of Flight mass spectra (MALDI-TOF MS) were recorded on 4700 Proteomics Analyser (Applied Biosystems) with TOF/TOF optics. The spectra were acquired in reflector mode and 1000 laser shots were averaged together. UV/visible spectra were obtained on a Hewlett Packard 8452A diode array spectrometer using a 10-mm path quartz cell versus a pure-solvent reference. Elemental analyses were performed in the University of Cambridge, UK.

5-(3'-Iodophenyl)-10,15,20-tris(3",5"-di-*tert*-butylphenyl)zincporphyrin (1)

3,5-di-tert-butylbenzaldehyde (6.66 g, 30.58 mmol), 3-iodobenzaldehyde (1.42 g, 6.12 mmol) and pyrrole (1.70 mL, 24.40 mmol) in propionic acid (100 mL) were heated to reflux for 6 h. The reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. The solid was redissolved in CH₂Cl₂ (300 mL) and Et₃N (15 mL) was added. The organic layer was washed with H₂O (4×300 mL). dried over Na₂SO₄ and the solvent was removed under reduced pressure to leave a black solid. The crude mixture was treated with excess Zn(OAc)₂·2H₂O (15 g) in CHCl₃/MeOH mixture (10% MeOH) and gently heated for 10 mins. The solution was washed with H₂O, dried over Na_2SO_4 and the solvent was removed under reduced pressure. The reaction mixture was purified by column chromatography on silica gel eluted with CH₂Cl₂/hexane (1/3) and the second fraction was collected. The fraction was purified again by column chromatography under the same conditions to yield 1 as purple solid (1.08 g, 16%). Recrystallisation from CH₂Cl₂ solution layered with MeOH afforded 1 of higher purity. ¹H NMR (500 MHz, CDCl₃) δ 9.06–9.03 (m, 6H, β-pyrrole), 8.96 (d, 2H, β-pyrrole), 8.65 $(dd, {}^{3}J_{ab} \approx {}^{3}J_{ad} = 1.6, 1H, H_{a}), 8.26 (ddd, {}^{3}J_{bc} = 7.5, {}^{3}J_{ba} \approx {}^{3}J_{bd} = 1.6, 1H, H_{b}), 8.16-8.10 (m, 7H, ArH), 7.84-7.81 (m, 3H, ArH), 7.52 (dd, {}^{3}J_{cb} \approx {}^{3}J_{cd} = 7.5, 1H, H_{c}), 1.57-1.55 (4)$ singlets, 54H, ^tBuH); MALDI-TOF MS (m/z): required 1138.4323, found 1138.3114;

 λ_{max} (CH₂Cl₂)/nm 422, 548, 580 (log [ϵ/M^{-1} cm⁻¹] 5.8, 4.6, 4.5); elemental analysis for C₆₈H₇₅N₄Zn·1CH₃OH: calcd. C 70.73, H 6.71, N 4.78; found C 70.40, H 6.66, N 4.68.

Zinc Trimer (4)

Tribornic ester **2** (40 mg, 0.09 mmol), zinc porphyrin monomer **1** (0.33 g, 0.29 mmol) and Na₂CO₃ (0.06 g, 0.53 mmol) were added to a biphasic mixture of toluene (10 mL), ethanol (4 mL) and distilled H₂O (3 mL). The solution was degassed for 30 minutes before Pd(PPh₃)₄ (18 mg, 0.02 mmol) was added. The reaction mixture was heated to 80 °C and stirred under argon for 4 days. The mixture was cooled down to room temperature and the aqueous layer was discarded. The organic layer was dried over Na₂SO₄ and the solvent was removed under reduced pressure. The reaction mixture was purified by preparative TLC on silica gel eluted with pentane/CH₂Cl₂/CHCl₃ (4/1/1) to yield **4** as purple solid (221 mg, 80%). Recrystallisation from CHCl₃ solution layered with MeOH afforded **1** of higher purity. ¹H NMR (500 MHz, CDCl₃) δ 9.00 (d, ³*J*_{lk} = 4.5, 6H, *H*_l), 8.97 (d, ³*J*_{kl} = 4.5, 6H, *H*_k), 8.95 (d, ³*J*_{fg} = 4.5, 6H, *H*_f), 8.88 (d, ³*J*_{gf} = 4.5, 6H, *H*_g), 8.66 (dd, ⁴*J*_{eb} \approx ⁴*J*_{ed} = 1.7, 3H, *H*_e), 8.32 (s, 3H, *H*_a), 8.18 (ddd, ³*J*_{dc} = 7.7, ⁴*J*_{db} \approx ⁴*J*_{de} = 1.7, 3H, *H*_e), 8.08 (dd, ⁴*J*_{mn} \approx ⁴*J*_{on} = 1.6, 3H, *H*_m or *H*_o), 8.08 (dd, ⁴*J*_{mn} \approx ⁴*J*_{on} = 1.6 or ⁴*J*_{on} \approx ⁴*J*_{oi} = 1.6 or ⁴*J*_{jh} \approx ⁴*J*_{ji} = 1.6 or ⁴*J*_{jh} \approx ⁴*J*_{no} = 1.6, 3H, *H*_m or *H*_o), 7.72 (dd, ⁴*J*_{th} \approx ⁴*J*_{tj} = 1.6, 6H, *H*_t), 1.54 (s, 27H, ¹Bu*H*), 1.53 (s, 27H, ¹Bu*H*), 1.50 (s, 54H, ¹Bu*H*), 1.34 (s, 54H, ¹Bu*H*); MALDI-TOF MS (m/z): required 3109.6084, found 3109.374; λ_{max} (CH₂Cl₂/nm 422, 548, 584 (log [ϵ /M⁻¹cm⁻¹] 5.9, 4.6, 4.1); elemental analysis for C₂₁₀H₂₂₈N₁₂Zn₃·1CHCl₃: calcd. C 78.32, H 7.13, N 5.19; found C 77.99, H 7.22, N 5.20.

Zinc Trimer (5)

1,3,5-triethnylbenzene **3** (5.20 mg, 0.03 mmol), zinc porphyrin monomer **1** (0.20 g, 0.15 mmol), Pd₂(dba)₃ (6.40 mg, 0.07 mmol) and AsPh₃ (0.11 g, 0.35 mmol) were dissolved in CH₂Cl₂ (8 mL) and Et₃N (4 mL). The solution was saturated with argon (three freeze-thaw cycles) and stirred at room temperature for 3 days, after which the solvent was removed under reduced pressure. The reaction mixture was purified by preparative TLC on silica gel eluted with pentane/CH₂Cl₂/CHCl₃ (4/1/1) to yield **2** as purple solid (102 mg, 91%). **1** (45 mg) could be recovered in the purification. Recrystallisation from CHCl₃ solution layered with MeOH afforded **2** of higher purity. ¹H NMR (500 MHz, CDCl₃) δ 9.02 (d, ³*J*_{kl} \approx ³*J*_{lk} = 4.8, 6H, *H*_k or *H*₁), 9.00 (d, ³*J*_{kl} \approx ³*J*_{lk} = 4.8, 6H, *H*_k or *H*₁), 8.98 (d, ³*J*_{gf} = 4.6, 6H, *H*_g), 8.93 (d, ³*J*_{fg} = 4.6, 6H, *H*_f), 8.40 (dd, ⁴*J*_{cb} \approx ⁴*J*_{cd} = 1.6, 3H, *H*_e), 8.20 (ddd, ³*J*_{dc} = 7.7, ⁴*J*_{db} \approx ⁴*J*_{de} = 1.6, 3H, *H*_d), 8.11 (dd, ⁴*J*_{mn} \approx ⁴*J*_{mo} = 1.7 or ⁴*J*_{om} \approx ⁴*J*_{on} = 1.7, 3H, *H*_m or *H*_o), 8.09–8.07 (m, 9H, *H*_m or *H*_o and *H*_h or *H*_j), 7.72 (s, 3H, *H*_a), 7.70 (dd, ³*J*_{cb} \approx ³*J*_{cd} = 7.7, ³*H*_{bd} \approx ⁴*J*_{be} = 1.6, 3H, *H*_b), 7.81 (dd, ⁴*J*_{mn} \approx ⁴*J*_{no} = 1.7, 3H, *H*_c), 1.54 (2 singlets, 54H, ¹Bu*H*), 1.52 (s, 54H, ¹Bu*H*), 1.45 (s, 54H, ¹Bu*H*); MALDI-TOF MS (m/z): required 3181.6084, found 3181.3665; λ_{max} (CH₂Cl₂)/nm 422, 548, 584 (log [ϵ /M⁻¹cm⁻¹] 6.1, 4.8, 4.4); elemental analysis for C₂₁₆H₂₂₈N₁₂Zn₃·3CH₃OH: calcd. C 80.16, H 7.28, N 5.12; found C 79.71, H 7.09, N 4.92.

NMR labelling scheme for zinc monomer 1 and zinc trimers 4 and 5

Fig. S1. Gas phase optimised geometries (PC Spartan, PM3 level) of the zinc trimer 4: propeller–shaped conformer (left) and bowl-shaped conformer (right).

Fig. S2. Molecular structure of zinc porphyrin monomer **1**. Hydrogen atoms have been omitted for clarity. (Key: grey-carbon, blue-nitrogen, purple-zinc, yellow-iodine)

Fig. S3. Molecular structure of triboronic ester **2**. Hydrogen atoms and solvent molecules have been omitted for clarity. (Key: grey-carbon, red-oxygen, yellow-boron)

X-ray quality crystals of **1** were obtained from a CH_2Cl_2 solution layered with MeOH. Xray quality crystals of **2** were grown form slow evaporation of the MeOH solution. Data were collected at 180 K on a Nonius KappaCCD with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The images were processed with the DENZO and SCALEPACK programs.⁴ The structures were solved by direct methods using the program SIR92.⁵ The refinement (on F) and graphical calculations were performed using the CRYSTALS⁶ program suite.

References

- 1 M. S. Newman and L. F. Lee, J. Org. Chem., 1972, 26, 4468.
- 2 A. B. Morgan, J. L. Jurs and J. M. Tour, J. Appl. Polym. Sci., 2000, 76, 1257.
- 3 H. L. Anderson, C. J. Walter, A. Vidal-Ferran, R. A. Hay, P. A. Lowden and J. K. M. Sanders, J. Chem. Soc. Perkin Trans 1, 1995, 2275.
- 4 Z. Otwinowski and W. Minor, 'Methods in Enzymology', ed. C. N. Carter Jr. and R. M. Sweet, Academic Press, 1996.
- 5 A. Altomare, G. Carascano, C. Giacovazzo, and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343.
- 6 D. J. Watkin, C. K. Prout, J. R. Carruthers, and P. W. Betteridge, in 'CRYSTALS', Oxford, UK, 1996.