Supporting Information

Full citation for reference number 9.

Gaussian 03, Revision B.05, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

Experimental

Ru₃CO₁₂, Ph₃PNSiMe₃, Et₃N, ^tBuOK were purchased pure (Aldrich) and used without prior purification. The solvents were dried and distilled by standard techniques before use. The products were isolated by means of preparative TLC (20x20 silica plates, 1mm). The NMR spectra (chemical shifts in ppm) were recorded on Bruker instruments (Avance 300 for ¹H, AMX400 for ³¹P and ¹³C at 300, 100.61 and 161.98 Mhz, respectively). The FTIR spectra were recorded on a Nicolet NEXUS spectrometer equipped with a Continuum FTIR microspectrometer. Elemental (C, H, N) analyses were performed on a Carlo Erba EA 1108 instrument.

Synthesis of compounds 1a/1b

A suspension of Ph₃PNSiMe₃ (200 mg, 0.57 mmol) and Ru₃(CO)₁₂ (300 mg, 0.47 mmol) in CH₂Cl₂ (1 mL) was placed under vacuum in a sealed tube and then heated to 130°C. The mixture turned to a brownish-red colour after 1 hour. The reaction was stopped after 3 h and compound **1a/1b** (yield 45%) was isolated by preparative TLC (CH₂Cl₂/Hexane 1:2 mixture, RF: 0.6).

1a: FTIR (KBr disc, vCO, cm⁻¹) 2064m, 2013vs, 1967vs, 1942sh, 1879w, 1814s. elemental analysis, calcd. (%) for Ru₃PO₉NC₂₇H₁₆: N 1.68, C 38.95, H 1.94; found: N 1.58, C 38.45, H 2.02.

1b: ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): $\delta = -15.2$ (d, 1H, ³*J*(¹H,³¹P) = 1.1 Hz ; μ-H), 7.7-7.3 (m, 15H; Ph); ¹H{³¹P} NMR (300 MHz, CDCl₃, 25°C, TMS): $\delta = -15.2$ (s, 1H; μ-H), 7.7-7.3 (m, 15H; Ph); ¹H NMR (400 MHz, d₈-toluene, TMS): $\delta = -14.75$ (s, 1H, ³*J*(¹H,³¹P) = 1.1 Hz, unmodified in the range 293-213 K; μ-H), 7.8-7.3 (m, 15H; Ph); ³¹P{¹H} NMR (161.98 MHz, CDCl₃, 25°C, ext. ref 85% H₃PO₄): $\delta = 52.0$ (s); ³¹P{¹H} NMR (161.98 MHz, d₈-toluene, 25°C, ext. ref 85% H₃PO₄): $\delta = 50.7$ (s, unmodified in the range 293-213 K); ¹³C{¹H} NMR (100.61 MHz, CDCl₃, 25°C, TMS): $\delta = 195.0$ (s, CO, strong), 203 (s,CO, weak), 133 – 127 (m, Ph); FTIR (KBr disc, vCO, cm⁻¹) 2071m, 2039s, 2011vs, 1992vs, 1967s, 1948s, 1948s, 1935s; FTIR (CH₂Cl₂, vCO, cm⁻¹) 2073w, 2047vs, 2017vs, 1990s, 1943w(sh); FTIR (Hexane, vCO, cm⁻¹) 2075m, 2048vs, 2020vs, 2012m(sh), 1997s, 1989m(sh), 1982m, 1960w, 1953w, 1947w; elemental analysis, calcd. (%) for Ru₃PO₉NC₃₇H₁₆: N 1.68, C 38.95, H 1.94; found: N 1.74, C 38.99, H 1.87.

Reaction of Ph₃PNSiMe₃ with Ru₃(CO)₁₂ in CD₂Cl₂

The aforementioned reaction was repeated by using CD_2Cl_2 instead of CH_2Cl_2 in order to exclude the proton migrations from the solvent.

A suspension of Ph₃PNSiMe₃ (100 mg, 0.28 mmol) and Ru₃(CO)₁₂ (150 mg, 0.23 mmol) in CD₂Cl₂ (0.5 mL) was placed under vacuum in a sealed tube and then heated to 140°C. The colour turned to brownish-red after 1 hour. The reaction was stopped after 3 h and compound **1a/1b** (yield 36%) was isolated by preparative TLC (CH₂Cl₂/Hexane 1:2 mixture, RF: 0.6).

Reversible 1a-1b conversion

Complex **1b** was dissolved in a $CH_2Cl_2/Hexane$ mixture. After stirring for five minutes, evaporation of the solvent mixture gave compound **1a** in a quantitative yield. In a reversible manner, dissolution of 1a in CH_2Cl_2 followed by evaporation of the solvent gave compound **1b** in a quantitative yield.

Synthesis of cation 2

Starting with 83 mg of compound 1a/b (0.1 mmol) dissolved in 30 mL of CH₂Cl₂, 11 mg of ^tBuOK (0.1 mmol) was then added to the yellow solution. The colour turned to pale yellow in 5 min. Filtration followed by evaporation of the solvents afforded 2·K as a yellow powder. Alternatively, 83 mg of compound 1a/b (0.1 mmol) was dissolved in 30 mL of CH₂Cl₂. 20 mg of Et₃N (0.2 mmol) was then added to the yellow solution. The colour turned to pale yellow in 15 min. Removal of all volatiles afforded 2·HNEt₃ as a yellow powder.

2.K: ¹H NMR (300 MHz, CDCl₃, 25°C, TMS): 7.8-7.2 (m; Ph); ³¹P{¹H} NMR (161.98 MHz, CDCl₃, 25°C, ext. ref 85% H₃PO₄): $\delta = 64.8$ (s); FTIR (KBr disc, vCO, cm⁻¹) 2011m, 1967vs, 1920vs, 1768s. FTIR (CH₂Cl₂ solution, vCO, cm⁻¹) 2015m, 1970vs, 1924vs, 1762m; elemental analysis calcd (%) for KRu₃PO₉NC₂₇H₁₅: N 1.61, C 37.24, H 1.74; found: N 1.60, C 38.04, H 1.65.

Figure1: Comparison between the FTIR spectra of compounds 1a/1b (solid, CH_2Cl_2 solution, saturated hexane solution) and 2.

Figure 2: ¹H NMR spectra of compound 1a/1b in D₈-toluene (ppm). No other signals detected in the typical hydride range (sw: 50 ppm centred at -10 ppm).

X-ray data collection, structure solution and refinement for compounds 1a and 1b.

Suitable crystals for the X-ray analysis of complexes 1b and 1b were obtained by evaporation of a dichloromethane/Hexane and a dichloromethane solution, respectively. The intensity data was collected at room temperature on a Bruker area detector AXS Smart 1000^[1] (graphite monochromated MoK_{α} radiation, $\lambda = 0.71073$ Å). Crystallographic and experimental details for the structures are summarized in Table 1. Bruker SADABS software ^[2] [maximum and minimum transmission coefficient values: 1.000 and 0.709 (1a), 1.000 and 0.886 (1b)] was used for the absorption correction. The structures were solved by direct methods and refined by full-matrix least-squares procedures (based on F_o^2 , SHELX-97)^[3] first with isotropic thermal parameters and then with anisotropic thermal parameters in the last cycles of refinement for all the nonhydrogen. For isomer **1a** the hydrogen atoms were found in the F_0^2 map and refined isotropically. For isomer 1b the hydrogen atoms were introduced into the geometrically calculated positions and refined *riding* on the corresponding parent atoms, except that bound to ruthenium, found in the F_0^2 map and refined isotropically. CCDC-289256 (1a), CCDC-289257 (1b), contain the supplementary crystallographic data for this paper that can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

¹ SAINT Software Users Guide; SMART Software Users Guide; Bruker Analytical X-ray Systems: Madison, WI, **1999**;

² Sheldrick, G. M. *SADABS*; Bruker Analytical X-ray Systems, Madison, WI, **1999**.

³ Sheldrick, M.; *SHELXL-97*, Program for crystal structure refinement; University of Göttingen: Germany, **1997**.

Table 1: X-ray data collection, structure solution and refinement paramters for

compounds 1a and 1b.

Complexes	1a	1b
Formula	$C_{27}H_{16}N_1O_9P_1Ru_3$	$C_{27}H_{16}N_1O_9P_1Ru_3$
FW	622.17	1276.9
Crystal System	Monoclinic	Monoclinic
Space Group	P21/n	P21/c
a, Å	9.153(5)	9.359(5)
<i>b</i> , Å	18.797(5)	17.664(5)
<i>c</i> , Å	17.026(5)	18.101(5)
α,°	90	90
<i>β</i> , °	90.88(3)	100.10(3)
γ.°	90	90
$V, Å^3$	2929 (2)	2946(5)
Z	4	4
D_{calcd} , g cm ⁻³	1.888	1.877
F(000)	1616	1616
Crystal size (mm)	$0.21 \times 0.18 \times 0.12$	$0.20 \times 0.09 \times 0.15$
μ, cm ⁻¹	16.34	16.24
Rflns. collected	15690	13668
Rflns. unique	5731	5036
Rflns. observed	2562	2072
$[I > 2\sigma(I)]$	5502	2072
Parameters	420	285
R Indices	R1 = 0.0306,	RI = 0.0411,
[<i>I</i> >2σ(<i>I</i>)]	wR2 = 0.0390	wR2 = 0.1222
R Indices	R2 = 0.0703,	R2 = 0.0442,
(all data)	wR2 = 0.0432	wR2 = 0.0535

Labelling Scheme For 1a

Labelling Scheme For 1b

Distances (Å)	1a	1a Computed	1b	1b Computed
	Crystallographic	(C_{3V})	Crystallographic	$(C_{\rm S})$
Ru1-Ru2	2.8421(9)	2.799	2.6667(9)	2.716
Ru1-Ru3	2.8291(9)	2.799	2.6588(9)	2.716
Ru2-Ru3	2.7920(14)	2.799	2.8179(8)	2.868
N1-Ru1	2.196(3)	2.160	2.097(5)	2.113
N1-Ru2	2.184(3)	2.160	2.113(5)	2.119
N1-Ru3	2.163(3)	2.160	2.119(5)	2.119
H1-Ru1	1.82(3)	1.931	-	
H1-Ru2	1.84(3)	1.931	1.85(6)	1.798
H1-Ru3	1.99(3)	1.931	1.92(6)	1.798
P1-N1	1.606(3)	1.586	1.631(5)	1.600
Ru1-C3	2.212(4)	2.156	-	
Ru1-C4	2.157(4)	2.156	-	
Ru2-C4	2.255(5)	2.156	-	
Ru2-C7	2.153(4)	2.156	-	
Ru3-C3	2.201(5)	2.156	-	
Ru3-C7	2.261(5)	2.156	-	

Table 2: Selected bond distances and angles for compounds 1a and 1b.

Angles (°)	1a	1a Computed	1b	1b Computed
	Crystallographic	(C_{3V})	Crystallographic	$(C_{\rm S})$
Ru2-Ru1-Ru3	58.98(3)	60.00	63.89(2)	63.75
Ru1-Ru2-Ru3	60.276(13)	60.00	58.19(2)	58.12
Ru1-Ru3-Ru2	60.74(2)	60.00	58.19(2)	58.12
Ru1-N1-Ru2	80.92(10)	80.80	78.59(17)	79.84
Ru1-N1-Ru3	80.94(10)	80.80	78.19(18)	79.84
Ru2-N1-Ru3	79.93(10)	80.80	83.5(2)	85.17
Ru1-H1-Ru2	101.7(7)	92.93	-	
Ru1-H1-Ru3	95.9(6)	92.93	96.8(7)	105.78
Ru2-H1-Ru3	93.4(7)	92.93	-	
P1-N1-Ru1	130.55(18)	131.55	128.5(3)	129.95
P1-N1-Ru2	132.33(17)	131.55	128.5(3)	129.95
P1-N1-Ru3	132.17(16)	131.55	138.2(3)	133.16
Ru1-C4-Ru2	80.17(15)	80.95	-	
Ru1-C3-Ru3	79.75(15)	80.95	-	
Ru2-C7-Ru3	78.43(16)	80.95	-	
N1-Ru1-H1	72.5(9)	74.71	-	
N1-Ru2-H1	72.4(8)	74.71	86.0(19)	83.33
N1-Ru3-H1	70.3(8)	74.71	84.1(19)	83.33

1010	uci lam						
0	-4.08922400	1.63012900	0.00000000	Р	0.01372700	2.88674300	0.00000000
0	-1.80807800	-0.18878300	3.12974100	Ν	-0.00001800	1.30041100	0.00000000
0	-3.35588700	-2.61988500	0.00000000	Ο	2.03729900	1.61943000	3.55054800
С	-3.15939300	0.94804800	0.00000000	Ru	0.80791400	-0.13224500	-1.39962000
С	-2.70586200	-1.67075900	0.00000000	С	2.44749600	-0.14747900	0.00000000
С	-1.22587300	-0.15324300	2.11926700	С	1.35317000	-1.67608800	-2.33708700
Ru	-1.61772600	-0.12951000	0.00000000	С	1.57511300	0.94066500	-2.74086000
0	1.67994300	-2.62661700	2.89669000	Ο	1.67994300	-2.62661700	-2.89669000
С	1.35317000	-1.67608800	2.33708700	0	3.61401700	-0.17479500	0.00000000
0	-1.80807800	-0.18878300	-3.12974100	Ο	2.03729900	1.61943000	-3.55054800
Н	-0.00079000	-1.18681500	0.00000000	Н	-0.61952500	3.49147400	-1.10678600
С	-1.22587300	-0.15324300	-2.11926700	Н	-0.61952500	3.49147400	1.10678600
Ru	0.80791400	-0.13224500	1.39962000	Н	1.29736500	3.47291600	0.00000000
С	1.57511300	0.94066500	2.74086000				
Mo	del 1b _m						
0	3.42005100	-0.86571400	2.23237800	С	-0.69973500	1.91256700	2.12791100
0	3.42005100	-0.86571400	-2.23237800	0	-0.63957400	2.99179700	2.52055700
С	2.66164700	-0.56732000	1.41578000	Ru	-0.81065200	0.14389900	-1.43408100
С	2.66164700	-0.56732000	-1.41578000	0	-0.63957400	2.99179700	-2.52055700
0	2.34735500	2.89247900	0.00000000	С	-0.69973500	1.91256700	-2.12791100
С	2.03021900	1.78427200	0.00000000	Н	-1.51297700	0.97098200	0.00000000
Ru	1.48867000	-0.03222100	0.00000000	С	-2.64530000	-0.25644100	1.93400100
0	0.49687700	-1.01335000	3.94372100	C	-2.64530000	-0.25644100	-1.93400100
С	0.02670500	-0.57649400	2.98753000	0	-3.72462900	-0.45447300	2.27965800
0	0.49687700	-1.01335000	-3.94372100	0	-3.72462900	-0.45447300	-2.27965800
Р	-0.38585400	-2.88405500	0.00000000	Н	-1.72305100	-3.33670700	0.00000000
С	0.02670500	-0.57649400	-2.98753000	Н	0.18714500	-3.54210500	1.10788100
Ν	-0.20543900	-1.29428000	0.00000000	Н	0.18714500	-3.54210500	-1.10788100
Ru	-0.81065200	0.14389900	1.43408100				
Mo	del 1cm						
0	2 33228100	3 34052600	0.85600100	0	2 46554300	-1 42348200	-2 90505100
ŏ	-2 33228100	3 34052600	0.85600100	Ru	-1 38528200	-0 79979300	-0.12512000
č	1 48441200	2 65714400	0.47819600	0	-2 46554300	-1 42348200	-2 90505100
Č	-1 48441200	2 65714400	0.47819600	Č	-2 07929700	-1 20048300	-1 84466700
õ	0.00000000	2 84696400	-2 90505100	C	1 55894800	-2 61411000	0.47819600
č	0.000000000	2 40096500	-1 84466700	C	-1 55894800	-2 61411000	0.47819600
Ru	0.000000000	1 59958600	-0.12512000	Õ	1 72684000	-3 69007800	0.85600100
0	4 05912100	0.34955200	0.85600100	Ő	-1 72684000	-3 69007800	0.85600100
č	3.04336000	-0.04303300	0.47819600	н	0.00000000	-1 28041400	3 45745500
õ	-4 05912100	0 34955200	0.85600100	Н	1 10887100	0.64020700	3 45745500
P	0.00000000	0.00000000	2 86815500	Н	-1 10887100	0.64020700	3 45745500
Ċ	-3 04336000	-0.04303300	0.47819600	N	0.00000000	0.00000000	1 27169200
Ru	1 38528200	-0 79979300	-0 12512000	н	0.00000000	0.00000000	-1 15857900
C	2,07929700	-1 20048300	-1 84466700	11	0.000000000	5.00000000	1.15057900
~		1.20010200	1.01100/00				

Table 3: Cartesian coordinates for the species $1a_m$, $1b_m$, $1c_m$, $2a_m$ and $2b_m$ Model $1a_m$

Model $2a_m$

0	0.00000000	4.15659400	1.58890000	Р	0.00000000	0.00000000	2.91781500
0	-3.09112900	1.7846640	0-0.39810600	Ν	0.00000000	0.00000000	1.34445500
0	0.00000000	3.1568420	0-2.68632000	Ο	-3.59971600	-2.07829700	1.58890000
С	0.00000000	3.18905800	0.94222200	Ru	1.39786900	-0.80706000	-0.07895000
С	0.00000000	2.56854100	-1.68755700	С	0.00000000	-2.40552700	-0.22552400
С	-2.08324800	1.20276400	-0.22552400	С	2.22442200	-1.28427000	-1.68755700
Ru	0.00000000	1.61412000	-0.07895000	С	2.76180500	-1.59452900	0.94222200
0	-2.73390500	-1.57842100	-2.68632000	О	2.73390500	-1.57842100	-2.68632000
С	-2.22442200	-1.28427000	-1.68755700	О	0.00000000	-3.56932900	-0.39810600
0	3.09112900	1.78466400	-0.39810600	О	3.59971600	-2.07829700	1.58890000
С	2.08324800	1.20276400	-0.22552400	Н	1.10250400	0.63653100	3.53703600
Ru	-1.39786900	-0.80706000	-0.07895000	Н	-1.10250400	0.63653100	3.53703600
С	-2.76180500	-1.59452900	0.94222200	Н	0.00000000	-1.27306200	3.53703600
Mo	del 2b _m						
0	3.45716900	-0.63444800	2.32625900	Ru	-0.78929700	0.02591300	1.36448900
0	3.45716900	-0.63444800	-2.32625900	С	-0.98333700	1.87723000	1.67313500
С	2.70785400	-0.39856100	1.47030100	Ο	-1.11647100	3.00906200	1.88790900
С	2.70785400	-0.39856100	-1.47030100	Ru	-0.78929700	0.02591300	-1.36448900
0	2.18094100	3.02680000	0.00000000	Ο	-1.11647100	3.00906200	-1.88790900
С	1.93291800	1.89396500	0.00000000	С	-0.98333700	1.87723000	-1.67313500
Ru	1.57527600	0.04029000	0.00000000	С	-2.62613200	-0.42476900	1.61019600
0	0.28010900	-0.62387400	4.16487700	С	-2.62613200	-0.42476900	-1.61019600
С	-0.08386700	-0.40095600	3.08435600	О	-3.74148500	-0.66266900	1.83146500
0	0.28010900	-0.62387400	-4.16487700	О	-3.74148500	-0.66266900	-1.83146500
Р	0.04171300	-2.96479600	0.00000000	Н	-1.22062000	-3.60535000	0.00000000
С	-0.08386700	-0.40095600	-3.08435600	Н	0.69184200	-3.56513200	1.10460800
Ν	0.00983200	-1.38117700	0.00000000	Н	0.69184200	-3.56513200	-1.10460800