Rapid Generation of Molecular Complexity using "Hybrid" Multi-Component Reactions (MCRs): Application to the Synthesis of α -Amino Nitriles and 1,2-Diamines

Jason J. Shiers, Guy J. Clarkson, Michael Shipman,* and Jerome F. Hayes

Electronic Supporting Information

General Method A: Synthesis of 1,2-diamines using MCR. Copper(I) iodide (20 mol%) was heated under vacuum in a round-bottomed flask then purged with argon (3 cycles performed). Anhydrous THF (4 ml) was added and the mixture cooled to -30 °C whereupon the Grignard reagent (2 eq.) was added. After stirring for 10 min, the methyleneaziridine (1 eq.) in THF (1 ml) was added dropwise and the resulting mixture allowed to warm to room temperature. After stirring for 3 h, the mixture was cooled to 0 °C and the electrophile (1.89 mmol, 1.5 eq.) was added dropwise. The mixture was heated at 40 °C for 18 h, then cooled to 0 °C. In a separate flask, a solution of TMSCN (1.5 eq.) in THF (1 ml) at 0 °C was treated with glacial acetic acid (2.5 eq.). After stirring for 2 h at 0 °C, the resulting HCN solution (CAUTION) was added dropwise via cannula to the reaction mixture. The mixture was stirred at 0 °C for 2 h, then $LiAlH_4$ (3 or 8 eq) was added dropwise to the cooled mixture. After stirring for 10 min, the mixture was allowed to warm to room temperature and was stirred for 18 h. The mixture was then cooled to 0 °C and quenched (CAUTION) by dropwise

addition of water (2 ml), then $NaHCO_3$ (aq) (2 ml). After stirring for 10 min, the organic phase was separated and the residue washed with Et₂O (3 × 20 ml). The combined organic phases were washed with $NaHCO_3$ (aq) and brine, dried (MgSO₄) and evaporated to give the crude product which was purified by column chromatography.

N²-Benzyl-2-phenethylbutane-1,2-diamine, 3. Copper(I) iodide (48 mq, 0.252 mmol), N-Benzyl-2-methylene-aziridine (183 mg, 1.26 mmol), methylmagnesium chloride (2.95 M in THF, 854 μ l, 2.52 mmol), benzyl chloride (218 µl, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid (176 μ l, 3.08 mmol) and LiAlH₄ (1M in THF, 10.1 ml, 10.1 mmol) were reacted together according to General method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH4OH gave 3 (162 mg, 46%) as a clear pale yellow R_f 0.32 (1% c. NH₄OH, 5% MeOH, 94% CH₂Cl₂); IR (film) 3408, oil. 3311, 2937, 1619, 1495, 1442 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.15 (10H, m, aryl), 3.65 (2H, s, NCH₂Ph), 2.62 (2H, s, CH₂NH₂), 2.61-2.57 (2H, m, PhCH₂CH₂), 1.68-1.63 (2H, m, PhCH₂CH₂), 1.48 (2H, qt, J = 7.5 Hz and 7.0 Hz CH_3CH_2), 1.23 (3H, br s, NH + NH₂), 0.90 (3H, t, J = 7.5 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) 142.9 (C, aryl), 141.3 (C, aryl), 128.5 (4 × CH, aryl), 128.29 (2 × CH, aryl), 128.28 (2 × CH, aryl), 126.9 (CH, aryl), 125.8 (CH, aryl), 58.1 (C), 45.7 (CH₂), 44.8 (CH₂), 35.3 (CH₂), 29.6 (CH₂), 26.0 (CH₂), 7.6 (CH₃); MS (ES⁺) m/z 283 (100%, [MH]⁺); HRMS (ES⁺) found [MH]⁺, 283.2169, $C_{19}H_{27}N_2$ requires 283.2169.

N²-Benzyl-2-phenethylpentane-1,2-diamine, 4. Copper(I) iodide (48 mg, 0.252 mmol), N-benzyl-2-methyleneaziridine (183 mg, 1.26 mmol), ethylmagnesium chloride (1.90 M in THF, 1.33 ml, 2.53 mmol), benzyl chloride (218 µl, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid (176 μ l, 3.08 mmol) and LiAlH₄ (1M in THF, 3.78 ml, 3.78 mmol) were reacted together according to General Method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH_4OH gave 4 (152 mg, 41%) as a clear pale yellow R_f 0.58 (1% c. NH₄OH, 10% MeOH, 89% CH₂Cl₂); IR (film) 3308, oil. 2930, 1602, 1495, 1453 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.42-7.15 (10H, m, aryl), 3.66 (2H, s, NCH₂Ph), 2.64 (2H, s, CH₂NH₂), 2.64-2.54 (2H, m, $PhCH_2CH_2$), 1.75-1.65 (2H, m, $PhCH_2CH_2$), 1.50-1.25 (7H, m, 2 × CH_2), NH and NH₂), 0.97 (3H, t, J = 7.0 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) 142.8 (C, aryl), 141.2 (C, aryl), 128.5 (4 × CH, aryl), 128.3 (2 × CH, aryl), 128.2 (2 × CH, aryl), 126.9 (CH, aryl), 125.8 (CH, aryl), 58.0 (C), 45.6 (CH₂), 45.3 (CH₂), 36.4 (CH₂), 35.9 (CH₂), 29.7 (CH₂), 16.5 (CH₂), 14.9 (CH₃); MS (ES⁺) m/z 297 (100%, [MH]⁺); HRMS (ES⁺) found [MH]⁺, 297.2328, $C_{20}H_{29}N_2$ requires 297.2325.

 N^2 -Benzyl-2-(but-3-enyl)heptane-1,2-diamine, 5. Copper(I) iodide (48 mg, 0.252 mmol), N-benzyl-2-methyleneaziridine (183 mg, 1.26 mmol), butylmagnesium chloride (1.90 M in THF, 1.33 ml, 2.53 mmol), allyl bromide (164 µl, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid (176 µl, 3.08 mmol) and LiAlH₄ (1M in THF, 3.78 ml, 3.78 mmol) were reacted together according to General Method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH₄OH gave 5 (144 mg, 42%) as a clear pale yellow oil. R_{f} 0.42 (0.5% c. NH₄OH, 10% MeOH, 89.5% CH₂Cl₂); IR (film) 3315, 2929, 1640, 1603, 1495, 1453 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.20 (5H, m, aryl), 5.85 (1H, ddt, J = 17.1 Hz, 10.1 Hz, 6.5 Hz, =CH), 5.04 (1H, dd, J = 17.1 Hz and 1.8 Hz, =CHH), 4.95 (1H, dd, J = 10.1 Hz and 1.8 Hz, =CHH), 3.59 (2H, s, NCH₂Ph), 2.57 (2H, s, CH₂NH₂), 2.07-1.98 (2H, m, CH₂CH=CH₂), 1.52-1.10 (13H, m, 5 × CH₂, NH and NH₂), 0.90 (3H, t, J = 7.0 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) 141.3 (C, aryl), 139.0 (=CH), 128.4 (2 × CH, aryl), 128.2 (2 × CH, aryl), 126.9 (CH, aryl), 114.3 (=CH₂), 57.8 (C), 45.6 (CH₂), 45.3 (CH₂), 33.7 (CH₂), 32.8 (CH₂), 32.6 (CH₂), 27.6 (CH₂), 22.74 (CH₂), 22.72 (CH₂), 14.1 (CH₃); MS (ES⁺) m/z 275 (MH⁺); HRMS (ES⁺) found [MH]⁺, 275.2479, C₁₈H₃₁N₂ requires 275.2482.

 N^2 -Benzyl-2-phenethylheptane-1,2-diamine, 6. Copper(I) iodide (48 mg, 0.252 mmol), N-benzyl-2-methyleneaziridine (183 mg, 1.26 mmol), butylmagnesium chloride (1.78 M in THF, 1.43 ml, 2.55 mmol), benzyl chloride (218 µl, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid (176 µl, 3.08 mmol) and LiAlH₄ (3.78 ml, 3.78 mmol) were reacted together according to General Method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH₄OH gave 6 (199 mg, 49%) as a clear pale yellow oil. R_f 0.35 (1% c. NH₄OH, 5% MeOH, 94% CH₂Cl₂); IR (film) 3062, 3025, 2928, 1602, 1495, 1453 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.14 (10H, m, aryl), 3.64 (2H, s, NCH₂Ph), 2.68-2.52 (2H, m, PhCH₂CH₂), 2.63 (2H, s, CH₂NH₂), 1.70-1.63 (2H, m, PhCH₂CH₂), 1.48-1.25 (8H, m, 4 × CH₂), 1.12 (3H, br s, NH + NH₂), 0.92 (3H, t, *J* = 6.9 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) 142.9 (C, aryl), 141.3 (C, aryl), 128.5 (4 × CH,

aryl), 128.29 (2 × CH, aryl), 128.27 (2 × CH, aryl), 126.9 (CH, aryl), 125.8 (CH, aryl), 58.0 (C), 45.7 (CH₂), 45.4 (CH₂), 35.9 (CH₂), 33.8 (CH₂), 32.6 (CH₂), 29.7 (CH₂), 22.9 (CH₂), 22.8 (CH₂), 14.2 (CH₃); MS (CI⁺) m/z 325 (100%, [MH]⁺), 294 (55%, [M-CH₂NH₂]⁺); HRMS (ES⁺) found [MH]⁺, 325.2637, $C_{22}H_{33}N_2$ requires 325.2638.

N^2 -Benzyl-2-(4-(tetrahydropyran-2-yloxy)butyl)heptane-1,2-diamine,

7. Copper(I) iodide mg, 0.252 mmol), N-benzyl-2-(48 methyleneaziridine (183 mg, 1.26 mmol), butylmagnesium chloride (1.90 M in THF, 1.33 ml, 2.53 mmol), 2-(3-bromopropoxy)tetrahydropyran (421 mg, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid (176 μ l, 3.08 mmol) and LiAlH₄ (1M in THF, 3.78 ml, 3.78 mmol) were reacted together according to General Method Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated Α. with NH₄OH gave 7 (160 mg, 34%) as a clear pale yellow oil. Rf 0.40 (0.5% c. NH₄OH, 10% MeOH, 89.5% CH₂Cl₂); IR (film) 3675, 3288, 2930, 1604, 1495, 1454 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.20 (5H, m, aryl), 4.58 (1H, t, J = 3.5 Hz O-CH-O), 3.94-3.85 (1H, m, OCHH), 3.82-3.75 (1H, m, OCHH), 3.58 (2H, s, NCH₂Ph), 3.55-3.45 (1H, m, OCHH), 3.44-3.37 (1H, m, OCHH), 2.56 (2H, s, CH₂NH₂), 1.88-1.77 (1H, m, CHH), 1.77-1.66 (1H, m, CHH), 1.66-1.10 (21H, m, 9 × CH_2 , NH and NH_2), 0.90 (3H, t, J = 7.0 Hz, CH_3); ¹³C NMR (100 MHz, CDCl₃) 141.3 (C, aryl), 128.4 (2 × CH, aryl), 128.3 (2 × CH, aryl), 126.8 (CH, aryl), 99.0 (O-CH-O), 67.3 (OCH₂), 62.5 (OCH₂), 57.9 (C), 45.6 (CH₂), 33.7 (CH₂), 33.5 (CH₂), 32.6 (CH₂), 30.8 (CH₂), 30.34 (CH₂), 30.31 (CH₂), 25.5 (CH₂), 22.7 (CH₂), 19.8 (CH₂), 19.74

(CH₂), 19.68 (CH₂), 14.1 (CH₃); MS (ES⁺) m/z 377 (100%, MH⁺); HRMS (ES⁺) found [MH]⁺, 377.3163, $C_{23}H_{41}N_2O_2$ requires 377.3163.

N²-Benzyl-2-isopentylhex-5-ene-1,2-diamine, 8. Copper(I) iodide (48 mg, 0.252 mmol), N-benzyl-2-methyleneaziridine (183 mg, 1.26 mmol), iso-butylmagnesium chloride (1.90 M in THF, 1.33 ml, 2.53 mmol), allyl bromide (164 μ l, 1.89 mmol), TMSCN (251 μ l, 1.88 mmol), glacial acetic acid (176 μ l, 3.08 mmol) and LiAlH₄ (1M in THF, 3.78 ml, 3.78 mmol) were reacted together according to General Method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH4OH gave 8 (150 mg, 43%) as a clear pale yellow oil. R_f 0.40 (0.5% c. NH₄OH, 10% MeOH, 89.5% CH₂Cl₂); IR (film) 3323, 2928, 1639, 1603, 1495, 1453 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.22 (5H, m, aryl), 5.85 (1H, ddt, J = 17.2 Hz, 10.2 Hz, 6.5 Hz, =CH), 5.04 (1H, dd, J = 17.2 Hz and 1.8 Hz, =CHH), 4.96 (1H, dd, J = 10.0 Hz and 1.8 Hz, =CHH), 3.59 (2H, s, NCH₂Ph), 2.57 (2H, s, CH_2NH_2), 2.07-1.99 (2H, m, CH_2), 1.54 (1H, heptet, J = 6.5 Hz, CH), 1.48-1.40 (2H, m, CCH₂), 1.39-1.30 (2H, m, CCH₂), 1.30-1.00 $(5H, m, CH_2, NH and NH_2)$, 0.92 $(6H, d, J = 6.5 Hz, 2 \times CH_3)$; ¹³C NMR (100 MHz, CDCl₃) 141.2 (C, aryl), 139.0 (=CH), 128.4 (2 × CH, aryl), 128.2 (2 × CH, aryl), 126.9 (CH, aryl), 114.3 (=CH₂), 57.8 (C), 45.6 (CH₂), 45.2 (CH₂), 32.7 (CH₂), 32.1 (CH₂), 31.3 (CH₂), 28.7 (CH), 27.5 (CH₂), 22.8 (2 × CH₃); MS (ES⁺) m/z 275 (100%, [MH]⁺); HRMS (ES⁺) found [MH]⁺, 275.2480, C₁₈H₃₁N₂ requires 275.2482.

2-(4-Methoxyphenethyl)-N²-Benzyl-5-methylhexane-1,2-diamine, 9. Copper(I) iodide (48 mg, 0.252 mmol), N-benzyl-2methyleneaziridine (183 mg, 1.26 mmol), iso-butylmagnesium chloride (1.90 M in THF, 1.33 ml, 2.53 mmol), 4-methoxybenzyl chloride (256 µl, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid (176 μ l, 3.08 mmol) and LiAlH₄ (1M in THF, 3.78 ml, 3.78 mmol) were reacted together according to General Method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH_4OH gave 9 (225 mg, 50%) as a clear pale yellow oil. R_f 0.41 (0.5% c. NH₄OH, 10% MeOH, 89.5% CH₂Cl₂); IR (film) 3333, 2930, 1611, 1584, 1511, 1464 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.20 (5H, m, aryl), 7.11 (2H, d, J = 8.6 Hz, aryl), 6.83 (2H, d, J = 8.6 Hz, aryl), 3.78 (3H, s, OCH₃), 3.64 (2H, s, NCH₂Ph), 2.62 (2H, m, CH_2NH_2), 2.59-2.50 (2H, m, Ph CH_2CH_2), 1.68-1.60 (2H, m, Ph CH_2CH_2), 1.54 (2H, heptet, J = 6.5 Hz, CH), 1.47-1.38 (2H, m, CH₂), 1.25-1.14 (5H, m, CH₂, NH and NH₂), 0.93 (6H, d, J = 6.5 Hz, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) 157.8 (COMe, aryl), 141.2 (C, aryl), 134.8 (C, aryl), 129.1 (2 × CH, aryl), 128.5 (2 × CH, aryl), 128.3 (2 × CH, aryl), 126.9 (CH, aryl), 113.9 (2 × CH, aryl), 57.9 (C), 55.3 (OCH₃), 45.6 (CH₂), 45.2 (CH₂), 35.9 (CH₂), 32.2 (CH₂), 31.3 (CH₂), 28.71 (CH), 28.68 (CH₂), 22.8 (2 × CH₃); MS (ES⁺) m/z 355 (100%, $[MH]^{+}$, 248 (35%, $[M-(PhCH_2NH)]^{+}$); HRMS (ES⁺) found $[MH]^{+}$, 355.2746, C₂₃H₃₅N₂O requires 355.2744.

2-(4-Methoxyphenethyl)- N^2 -Benzyl-5-phenylbutane-1,2-diamine, 10. Copper(I) iodide (48 mg, 0.252 mmol), N-benzyl-2methyleneaziridine (183 mg, 1.26 mmol), benzylmagnesium chloride (1.90 M in THF, 1.33 ml, 2.53 mmol), 4-methoxybenzyl chloride (256 µl, 1.89 mmol), TMSCN (251 µl, 1.88 mmol), glacial acetic acid

(176 μ l, 3.08 mmol) and LiAlH₄ (1M in THF, 3.78 ml, 3.78 mmol) were reacted together according to General Method A. Column chromatography (5% MeOH in CH₂Cl₂) on SiO₂ pretreated with NH₄OH gave 10 (231 mg, 47%) as a clear pale yellow oil. R_f 0.41 (0.5% c. NH₄OH, 10% MeOH, 89.5% CH₂Cl₂); IR (film) 3248, 2933, 1609, 1583, 1510, 1495, 1452 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.42-7.15 (10H, m, aryl), 7.12 (2H, d, J = 8.6 Hz, aryl), 6.84 (2H, d, J = 8.6 Hz, aryl), 3.78 (3H, s, OCH₃), 3.70 (2H, s, NCH₂Ph), 2.70 (2H, s, CH_2NH_2), 2.68-2.55 (4H, m, 2 × Ar CH_2CH_2), 1.80-1.72 (4H, m, 2 × $ArCH_2CH_2$), 1.21 (3H, br s, NH and NH₂); ¹³C NMR (100 MHz, CDCl₃) 157.9 (COMe, aryl), 142.6 (C, aryl), 141.1 (C, aryl), 134.6 (C, aryl), 129.2 (2 × CH, aryl), 128.5 (2 × CH, aryl), 128.4 (2 × CH, aryl), 128.31 (2 × CH, aryl), 128.26 (2 × CH, aryl), 127.0 (CH, aryl), 125.9 (CH, aryl), 114.0 (2 × CH, aryl), 58.1 (C), 55.3 (OCH₃), 45.7 (CH₂), 45.3 (CH₂), 36.1 (CH₂), 35.9 (CH₂), 29.8 (CH₂), 28.9 (CH₂); MS (ES⁺) m/z 389 (100%, [MH]⁺), 282 (35%, [M- $(PhCH_2NH)]^+$; HRMS (ES⁺) found $[MH]^+$, 389.2589, $C_{26}H_{33}N_2O$ requires 389.2587. Anal. calcd for C₂₆H₃₂N₂O: C, 80.37%; H, 8.30%; N, 7.21%. Found: C, 80.65%; H, 8.42%; N, 7.13%.

1-Benzyl-5-pentyl-5-phenethylimidazolidin-2-one. Triphosgene (110 mg, 370 μ mol) was added to a stirred solution of **6** (300 mg, 925 μ mol) and triethylamine (309 μ l, 2.22 mmol) in CH₂Cl₂ at 0 °C. The resulting solution was stirred at 0 °C for 18 h. The mixture was then quenched with NH₄Cl (2 ml) and diluted with CH₂Cl₂ (15 ml). The organic phase was separated and washed with NaHCO₃ (2 × 10 ml) then brine (10 ml), dried (MgSO₄) and evaporated. Purification of

the residue by column chromatography on SiO₂ (Et₂O) gave 1-benzyl-5-pentyl-5-phenethylimidazolidin-2-one (225 mg, 69%) as a white crystalline solid, m.p. 115-116 °C. R_f 0.20 (Et₂O); IR (film) 3216, 2924, 1676, 1496, 1454 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.44 (2H, d, J = 7.0 Hz, aryl), 7.36-7.10 (6H, m, aryl), 6.85 (2H, d, J = 7.0 Hz, aryl), 4.60 (1H, s, NH), 4.41 (1H, d, J = 15.6 Hz, PhCHHN), 4.30 (1H, d, J = 15.6 Hz, PhCHHN), 3.36 (1H, d, J = 8.8 Hz, CHHNH),3.32 (1H, d, J = 8.8 Hz, CHHNH), 2.55 (1H, td, J = 13.3 Hz and 5.0 Hz, $PhCHHCH_2$), 2.33 (1H, td, J = 13.3 Hz and 5.0 Hz, $PhCHHCH_2$), 1.78 (1H, td, J = 12.4 Hz and 4.8 Hz, PhCH₂CHH), 1.67 (1H, td, J =12.4 Hz and 4.8 Hz, PhCH₂CHH), 1.56-1.38 (2H, m, CH₂), 1.30-0.95 $(6H, m, 3 \times CH_2)$, 0.82 $(3H, t, J = 7.2 Hz, CH_3)$; ¹³C NMR (100 MHz,CDCl₃) 162.6 (C=O), 141.6 (C, aryl), 139.7 (C, aryl), 128.50 (2 × CH, aryl), 128.49 (2 × CH, aryl), 128.4 (2 × CH, aryl), 128.2 (2 × CH, aryl), 127.2 (CH, aryl), 125.9 (CH, aryl), 63.9 (C), 47.1 (CH₂), 43.1 (CH₂), 41.0 (CH₂), 39.0 (CH₂), 32.0 (CH₂), 29.8 (CH₂), 23.0 (CH₂), 22.6 (CH₂), 14.0 (CH₃); MS (ES⁺) m/z 373 (30%, [M+Na]⁺), 351 (100%, $[MH]^+$); HRMS (ES⁺) found $[MH]^+$, 351.2433, $C_{23}H_{31}N_2O$ requires 351.2431. Anal. calcd for C₂₃H₃₀N₂O: C, 78.82%; H, 8.63%; N, 7.99%. Found: C, 78.97%; H, 8.58%; N, 8.04%.

X-Ray data for 1-benzyl-5-pentyl-5-phenethylimidazolidin-2-one. Crystal grown from petroleum ether/CH₂Cl₂ using vapour diffusion method. $C_{23}H_{30}N_2O$ colourless block, 0.60 x 0.50 x 0.18 mm, Monoclinic, P2(1)/c (No 14), alpha = 90 deg., beta = 101.470(13) deg., gamma = 90 deg., a = 27.33(2), b = 13.742(10), c = 11.347(8)Å, U = 4176(5)Å³, Z 8, D(cal) = 1.115 gcm⁻³, 2 θ_{max} 58.34, λ = 0.71073 Å, 26328 reflections measured, 10240 unique [R(int) = 0.0747], R1[for 5389 reflections with I>2sigma(I)] = 0.0772, wR2 = 0.2203, T_{min} 0.8185, T_{max} 0.9879, $\mu(Mo_{\kappa\alpha})$ = 0.068 mm⁻¹. Data / restraints / parameters 10240/ 0/ 477 refined against F² (SHELXTL: G. M. Sheldrick, *SHELXTL Ver 5.1*, Bruker Analytical X-ray Systems, **1997**). Largest difference Fourier peak and hole 0.326 and -0.225 e.Å⁻³. CCDC 286809 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallograpic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

ORTEP view of 1-benzyl-5-pentyl-5-phenethylimidazolidin-2-one drawn at 50% probability level. The asymmetric unit contains two crystallographically independent, but chemically identical molecules, of which only one is shown.

N-Benzyl-2-ethylpiperidine-2-carbonitrile, 11. Copper(I) iodide
(48 mg, 0.252 mmol) was heated under vacuum in a round-bottomed

flask, and then purged with argon (3 cycles performed). Anhydrous THF (4 ml) was added and the mixture cooled to -30 °C, whereupon MeMqCl (2.95M in THF, 854 μ l, 2.52 mmol) was added. After stirring for 10 min, N-benzyl-2-methyleneaziridine (183 mg, 1.26 mmol) in THF (1 ml) was added dropwise. The mixture was allowed to warm to room temperature and stirred for 18 h. The mixture was added dropwise via cannula to a stirred solution of 1,3diiodopropane (722 µl, 6.29 mmol) in THF (1 ml) at 0 °C. The mixture was then heated at 40 °C for 2 h. In a second flask, a solution of TMSCN (251 $\mu l\,,$ 1.88 mmol) in THF (1 ml) at 0 °C was treated with glacial acetic acid (176 μ l, 3.08 mmol) and this mixture was stirred for 2 h at 0 °C. The resulting HCN solution (CAUTION) was added dropwise via cannula to the first vessel. After 2 h at 0 °C, saturated NaHCO₃ (2 ml) was added slowly. The mixture was diluted with Et₂O (20 ml), the organic layer separated and washed with saturated $NaHCO_3$ (2 x 20 ml) then brine (20 ml). The organic phase was dried over MgSO, filtered and the solvent removed under reduced pressure. Purification of the residue by column chromatography on SiO₂ (2% EtOAc/petrol) gave **11** (157 mg, 55%) as a clear colourless oil. R_f 0.31 (10% EtOAc in petrol); IR (film) 2940, 2217 (w), 1605, 1496, 1452, 1367 cm⁻¹; ¹H NMR (400 MHz, C_6D_6) 7.30-7.21 (5H, m, aryl), 4.12 (1H, d, J = 13.8 Hz, CHHPh), 3.11 (1H, d, J = 13.8 Hz, CHHPh), 2.75 (1H, pseudo dt, J = 12.3 Hz and 4.0 Hz, ring NCHH), 2.21 (1H, td, J = 12.3 Hz and 2.8 Hz, ring NCHH), 1.98-1.85 (3H, m, CH_2CH_3 and CHH), 1.78-1.52 (4H, m, 2 × CH_2), 1.47-1.32 (1H, m, CHH), 1.06 (3H, t, J = 7.3 Hz, CH_3); ¹³C NMR (100 MHz, CDCl₃) 138.8 (C, aryl), 128.4 (2 × CH, aryl), 128.3 (2 ×

Page 11 of 16

CH, aryl), 127.0 (CH, aryl), 119.3 (CN), 62.2 (CCN), 55.2 (CH₂Ph), 49.5 (CH₂), 33.9 (CH₂), 31.0 (CH₂), 25.1 (CH₂), 21.8 (CH₂), 7.5 (CH₃); MS (CI⁺) m/z 229 (15%, MH⁺), 202 (100%, $[M-CN]^+$); HRMS (CI⁺) found MH⁺, 229.1697, C₁₅H₂₁N₂ requires 229.1699. Anal. calcd for C₁₅H₂₀N₂: C, 78.90%; H, 8.83%; N, 12.27%. Found: C, 78.60%; H, 8.66%; N, 11.96%.

N-Benzyl-2-ethylpiperidine-2-carboxamide, 13. N-Benzyl-2ethylpiperidine-2-carbonitrile (370 mg, 1.62 mmol) was dissolved in TFA (2.25 ml) and conc. H_2SO_4 (2.25 ml) and heated at 50 °C for The mixture was then cooled, poured onto crushed ice (ca. 18 h. 50 g) and the resulting aqueous solution basified by addition of solid K_2CO_3 . The mixture was then extracted with EtOAc (3 × 50 The combined organic extracts were washed with NaHCO₃ (ag) ml). (100 ml) then brine (100 ml), dried $(MgSO_4)$ and evaporated. Purification of the residue by column chromatography on SiO_2 (Et₂O) gave 13 (315 mg, 79%) as buff prisms, m.p. 134-136 °C. R_f 0.23 (Et₂O); IR (solid) 3414, 3171, 1682, 1577, 1493 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.38-7.22 (5H, m, aryl), 7.15 (1H, br s, NH), 5.35 (1H, br s, NH), 3.88 (1H, d, J = 14.0 Hz, CHHPh), 3.50 (1H, d, J = 14.0 Hz, CHHPh), 2.75-2.67 (1H, m, ring NCHH), 2.54-2.47 (1H, m, ring NCHH), 1.96-1.89 (1H, m, CHH), 1.84-1.50 (6H, m, 3 × CH₂), 1.33-1.24 (1H, m, CHH), 1.04 (3H, t, J = 7.5 Hz, CH₃); ¹³C NMR (100 MHz, CDCl₃) 178.8 (C=O), 139.7 (C, aryl), 128.2 (2 × CH, aryl), 127.8 (2 × CH, aryl), 126.7 (CH, aryl), 66.5 (CCONH₂), 52.1 (CH₂Ph), 46.0 (CH_2) , 29.7 (CH_2) , 25.8 (CH_2) , 21.1 (CH_2) , 9.1 (CH_3) ; MS (ES^+) m/z

247 (100%, MH^+); HRMS (ES⁺) found MH^+ , 247.1804, $C_{15}H_{23}N_2O$ requires 247.1805. Anal. calcd for $C_{15}H_{22}N_2O$: C, 73.13%; H, 9.00%; N, 11.37%. Found: C, 73.05%; H, 8.99%; N, 11.15%.

X-ray data for 13. Crystal grown by slow evaporation from diethyl ether. $C_{15}H_{22}N_2O$ colourless block, 0.60 x 0.40 x 0.18 mm, Monoclinic, P2(1)/n (No 14), alpha = 90 deg., beta = 100.508(8) deg., gamma = 90 deg., a = 11.149(6), b = 10.559(5), c = 11.588(6) Å, U = 1341.3(12) Å³, Z 4, D(cal) = 1.220 gcm⁻³, $2\theta_{max}$ 58.26, λ = 0.71073 Å, 8760 reflections measured, 3310 unique [R(int) = 0.0453], R1[for 5389 reflections with I>2sigma(I)] = 0.0772, wR2 = 0.2203, T_{min} 0.7642, T_{max} 0.9863, $\mu(Mo_{K\alpha})$ = 0.077 mm⁻¹. Data / restraints / parameters 3310/ 0/ 170 refined against F² (SHELXTL: G. M. Sheldrick, *SHELXTL Ver 5.1*, Bruker Analytical X-ray Systems, **1997**). Largest difference Fourier peak and hole 0.340 and -0.301 e.Å⁻³. CCDC 286808 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from the Cambridge Crystallograpic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

N-Benzyl-2-(3-methylbutyl)piperidine-2-carbonitrile, 12. Copper(I) iodide (48 mg, 0.252 mmol) was heated under vacuum in a roundbottomed flask, then purged with nitrogen (3 cycles performed). Anhydrous THF (4 ml) was added and the mixture cooled to -30 °C, whereupon iso-BuMgCl (1.90M in THF, 1.33 ml, 2.52 mmol) was added. After stirring for 10 min, N-benzyl-2-methyleneaziridine (183 mg, 1.26 mmol) in THF (1 ml) was added dropwise. The mixture was

allowed to warm up to room temperature and was stirred for 3 h. The reaction mixture was cooled to 0 °C and 1,3-diiodopropane (361 µl, 3.14 mmol) was added dropwise. The reaction mixture was then heated at 40 °C for 18 h. In a second flask, a solution of TMSCN (251 µl, 1.88 mmol) in THF (1 ml) at 0 °C was treated with glacial acetic acid (176 μ l, 3.08 mmol) and stirred for 2 h. The resulting HCN solution (CAUTION) was added dropwise via cannula to the first vessel. After 2 h at 0 °C, saturated NaHCO₃ (2 ml) was added slowly. After 5 min, the mixture was diluted with Et₂O (20 ml), the organic layer separated, and washed with saturated NaHCO₃ (2 x 20 ml) then brine (20 ml). The organic phase was dried over MqSO, filtered and the solvent removed under reduced pressure. Purification of the residue by MPLC (2-5% EtOAc/petrol) gave 12 (182 mg, 53%) as a clear colourless oil. R_f 0.39 (10% EtOAc in petrol); IR (film) 2954, 2215 (w), 1605, 1496, 1453, 1368 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$) 7.38-7.20 (5H, m, aryl), 4.12 (1H, d, J = 13.8 Hz, CHHPh), 3.11 (1H, d, J = 13.8 Hz, CHHPh), 2.75 (1H, m, ring NCHH), 2.20 (1H, td, J = 12.3 Hz and 2.8 Hz, ring NCHH), 1.98-1.82 (3H, m, CH₂ and CH), 1.80-1.30 (8H, m, $4 \times CH_2$), 0.91 $(3H, d, J = 6.5 Hz, CH_3)$, 0.88 $(3H, d, J = 6.5 Hz, CH_3)$; ¹³C NMR (100 MHz, CDCl₃) 138.8 (C, aryl), 128.42 (2 × CH, aryl), 128.38 (2 × CH, aryl), 127.0 (CH, aryl), 119.3 (CN), 61.9 (CCN), 55.3 (CH₂Ph), 49.5 (CH₂), 36.1 (CH₂), 34.5 (CH₂), 31.7 (CH₂), 28.3 (CH), 25.1 (CH₂), 22.6 (CH₃), 22.4 (CH₃), 21.9 (CH₂); MS (ES⁺) m/z 271 (85%, MH⁺), 244 (100%, [M-CN]⁺); HRMS (ES⁺) found MH⁺, 271.2166, C₁₈H₂₇N₂ requires 271.2169. Anal. calcd for C₁₈H₂₆N₂: C, 79.95%; H, 9.69%; N, 10.36%. Found: C, 79.75%; H, 9.96%; N, 10.10%.

Page 14 of 16

2-Pentyl-N-[(S)-1-phenylethyl]piperidine-2-carbonitrile, 15. Copper(I) iodide (48 mg, 0.252 mmol) was heated under vacuum in a round-bottomed flask, then purged with nitrogen (3 cycles performed). Anhydrous THF (4 ml) was added and the mixture cooled to -30 °C, whereupon BuMgCl (1.90M in THF, 1.33 ml, 2.53 mmol) was After stirring for 10 min, N-[(S)-1-phenylethyl]-2added. methyleneaziridine (200 mg, 1.26 mmol) in THF (1 ml) was added The mixture was allowed to warm up to room temperature dropwise. and was stirred for 3 h. The reaction mixture was cooled to 0 °C and 1,3-diiodopropane (361 μ l, 3.14 mmol) was added dropwise. The reaction mixture was then heated at 40 °C for 18 h. In a second flask, a solution of TMSCN (251 μ l, 1.88 mmol) in THF (1 ml) at 0 °C was treated with glacial acetic acid (176 µl, 3.08 mmol) and stirred for 2 h. The resulting HCN solution (CAUTION) was added dropwise via cannula to the first vessel. After 2 h at 0 °C, saturated NaHCO₃ (2 ml) was added slowly. After 5 min, the mixture was diluted with Et₂O (20 ml), the organic layer separated, and washed with saturated NaHCO₃ (2 x 20 ml) then brine (20 ml). The organic phase was dried over MgSO4, filtered and the solvent removed under reduced pressure. Crude ¹H NMR analysis indicated that 15 had been produced as a 9:1 mixture of diastereomers. Purification on SiO₂ (2% EtOAc/petrol) gave 15 (145 mg, 41%) as a clear colourless oil. R_f 0.45 (10% EtOAc in petrol); IR (film) 2934, 2214 (w), 1602, 1494, 1445, 1383 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) 7.47-7.37 (2H, m, aryl), 7.35-7.27 (2H, m, aryl), 7.25-7.15 (1H, m, aryl), 4.43 (0.9H, q, J = 6.9 Hz, CHCH₃Ph (major)), 4.29 (0.1H, q, J = 6.9 Hz, CHCH₃Ph (minor)), 3.14-3.08 (0.1H, m, ring NCHH

(minor)), 2.63-2.48 (1.8H, m, ring NCH₂ (major)), 2.41-2.30 (0.2H, m, ring NCH*H* and C*H*H (minor)), 2.05-1.20 (13.9H, m, $7 \times CH_2$), 1.51 (2.7H, d, J = 6.8 Hz, CHCH₃ (major)); 1.45 (0.3H, d, J = 7.3 Hz, CHCH₃ (minor)); 0.93 (0.3H, t, J = 7.0 Hz, CH₃ (minor)) , 0.87 (2.7H, t, J = 7.0 Hz, CH₃ (major)); ¹³C NMR (100 MHz, CDCl₃) for major diastereomer: 144.3 (C, aryl), 128.1 (2 × CH, aryl), 127.1 (2 × CH, aryl), 126.5 (CH, aryl), 122.1 (CN), 59.9 (CCN), 53.5 (CHCH₃Ph), 42.8 (CH₂), 38.0 (CH₂), 36.3 (CH₂), 32.1 (CH₂), 25.5 (CH₂), 23.0 (CH₂), 22.5 (CH₂), 22.3 (CH₂), 14.0 (CH₃), 11.2 (CH₃); MS (CI⁺) m/z 285 (5%, MH⁺), 258 (100%, [M-CN]⁺). Anal. calcd for C₁₉H₂₈N₂: C, 80.23%; H, 9.92%; N, 9.85%. Found: C, 79.93%; H, 9.95%; N, 9.63%.