Electronic Supporting Information

Superparamagnetic Bimetallic Cyanide-bridged Coordination Nanoparticles with $T_B = 9 \text{ K}$

Laure Catala,^{*a} Alexandre Gloter, ^b Odile Stephan, ^b Guillaume Rogez,^c and Talal Mallah^{*a}

Figure S1. X-ray powder diffraction diagram of the nanoparticles

Figure S2. $\chi_M T=f(T)$ within a field of 0.5 T for 1

Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2006

Figure S3. $1/\chi_M = f(T)$ between 200 and 300 K (0) experimental, (---) best fit

Figure S4. Magnetization *vs* field at T = 2K for **1**

Supplementary Material (ESI) for Chemical Communications # This journal is (c) The Royal Society of Chemistry 2006

Figure S5. In-phase (χ_M) component of the ac susceptibility *vs*. temperature at 50 (•), 100 (•), 250 (•), 500 (•) and 1000 (•) Hz for 1

Figure S6. $ln(\tau) = f(1/T_{max})$ for **1** (0) experimental, (—) best fit