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1. UV-Vis absorption spectra 
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Figure S1  UV-Vis spectra of Alq3, 5FAlq3, 6FAlq3 and 7FAlq3 in CHCl3 solutions (~1×10-5 M). 
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Figure S2   UV-Vis spectra of Alq3, 5FAlq3, 6FAlq3 and 7FAlq3 thin films vacuum-deposited on 

the quartz substrates (~50 nm thick). 

 

2. Geometric isomers 
1H NMR spectra of Alq3 and its fluorinated derivatives solutions in CDCl3 were 

obtained on a Bruker AVANCE DMX500 nuclear resonance spectroscope (500 MHz) 

under ambient conditions. From these spectra (Figures S4-S7), it is concluded that 

Alq3 and its fluorinated derivatives obtained in this work (purified twice by 

temperature gradient sublimation) are all meridianal isomers, in which three 

hydroquinoline ligands are inequivalent by geometric symmetry, i.e. each ligand is 

distinguishable, leading to the splitting of the NMR peak of each hydrogen atom, 

especially those H atoms located on the pyridyl ring (H2, H3 and H4, see Figure S3). 
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Detailed assignments of NMR peaks of mer-Alq3 can be found in the work reported by 

M. Utz et al. (J. Am. Chem. Soc., 2003, V125, p1371). Our results are in perfect 

consistence with theirs. 
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Figure S3  Molecular structures of Alq3 and its fluorinated derivatives (left), and 3D schematics of 

the meridianal and facial isomers (right).  
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Figure S4  1H NMR spectrum of Alq3 solution in CDCl3. 
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Figure S5  1H NMR spectrum of 5FAlq3 solution in CDCl3. 
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Figure S6  1H NMR spectrum of 6FAlq3 solution in CDCl3. 
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Figure S7  1H NMR spectrum of 7FAlq3 solution in CDCl3. 

 

It had been demonstrated that mer-Alq3 can be transformed to fac-Alq3 by 

annealing, resulting in an exothermic phase transition at ~ 380 oC in the DSC curve 

(Adv. Funct. Mater., 2003, V13, p108). In our experiments, we also observed this 

phenomenon. However, the phase transition peaks of fluorinated Alq3 derivatives 

could not be found. Furthermore, the vacuum-deposited films of Alq3 and its 

fluorinated derivatives are all amorphous (because there are no diffraction peaks in 

XRD patterns). Therefore, in our case, the effect of fluorination position on the optical 

properties of Alq3 originates from different molecular electronic structures instead of 

stereo isomerization or crystal polymorphs. 
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3. Fluorescence efficiencies in thin films 
Alq3 and its fluorinated derivatives were vacuum evaporated at a pressure below 

1×10-5 Torr onto glass substrates (30 mm × 30 mm), and the deposition rate was 1-2 

Å/s. All obtained thin films were 50 nm thick, monitored with a quartz crystal 

oscillator. Their fluorescence spectra were recorded at an excitation wavelength of 370 

nm on a Hitachi 4500 fluorescence spectrophotometer. With Alq3 as a reference, the 

fluorescence efficiencies of fluorinated Alq3 derivatives in the solid state were roughly 

estimated by comparing their fluorescence intensity after the calibration of their 

absorbances at 370 nm.  

   

4. HOMO-LUMO levels 
 Cyclic voltammetry (CV) measurements were carried out on a CHI600A 

electrochemical workstation, using millimolar solutions in CH2Cl2 containing 0.1M 

supporting electrolyte of tetrabutylammonium perchlorate in a three-electrode-cell, 

where Pt plate served as the working electrode, Pt wire as the counter electrode, and 

saturated calomel electrode (SCE) was used as the reference electrode. The scanning 

rate was 50 mV/s. From one-electron quasi-reversible reduction and oxidation peaks in 

CV curves (Figures S8-S12), the LUMO energy levels of Alq3, 5FAlq3, 6FAlq3, and 

7FAlq3 were calculated as -2.82, -3.06, -3.25, and -3.00 eV, respectively. It was worthy 

noting that the reduction and oxidation peaks of Alq3 were not well resolved under 

normal scanning rate (J. Am. Chem. Soc., 1998, V120, p9646), however, they became 

obvious in the 1st derivative of the CV curve (Chem. J. Chinese Universities, 2000, 

V21, p1422). From their absorption onsets in solutions (Figure S1), the 

LUMO-HOMO band gaps of Alq3, 5FAlq3, 6FAlq3 and 7FAlq3 were estimated as 2.81, 

2.66, 2.93 and 2.81 eV, respectively. Thus the HOMO energy levels of Alq3, 5FAlq3, 

6FAlq3, and 7FAlq3 were calculated to be -5.63, -5.72, -6.18, and -5.81 eV, 

respectively.  
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Figure S8  Cyclic voltammogram of Alq3 solution in CH2Cl2. 
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Figure S9  The 1st differential curve of cyclic voltammogram of Alq3 solution in CH2Cl2. 
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Figure S10 Cyclic voltammogram of 5FAlq3 solution in CH2Cl2. 
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Figure S11 Cyclic voltammogram of 6FAlq3 solution in CH2Cl2. 
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Figure S12 Cyclic voltammogram of 7FAlq3 solution in CH2Cl2. 

 


