Supplementary Material

The Unexpected Reactivity of Zeise's Anion in Strong Basic Medium Discloses New Substitution Patterns at the Platinum Centre

Michele Benedetti,^{*a*} Francesco P. Fanizzi,*^{*a*} Luciana Maresca*^{*b*} and Giovanni Natile^{*b*}

^a Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi di Lecce, Via Monteroni, I-73100 Lecce, Italy. E-mail: fp.fanizzi@unile.it; Fax: +39 0832 298626; Tel: +39 0832 298867.

^b Dipartimento Farmaco-Chimico, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy. E-mail: maresca@farmchim.uniba.it; Fax: +39 080 5442230; Tel: +39 080 5442759.

Experimental Section

Materials. All solvents and reagents, except otherwise stated, were purchased from Aldrich Chemical Company and used as received. Zeise's salt was prepared from potassium tetrachloroplatinate and ethylene gas as previously described.²⁰

Synthesis of complexes

[Pt(η^1 -C₂H₄OMe)Cl(Me₄en)], 7a. Zeise's salt (245 mg, 0.633 mmol) and KOH (71 mg, 1.3 mmol) were dissolved in 10 mL of cold MeOH (0 °C, ice bath); a white precipitate of KCl immediately formed and the colour of the solution changed from bright to pale yellow. After a couple of minutes Me₄en (74 mg, 0.64 mmol) was introduced in the reaction vessel and the mixture was stirred for about 3 hours; meanwhile the solution became completely colourless. The solvent was evaporated under vacuum and the solid residue was repeatedly extracted with CH₂Cl₂ (total used volume ~30 mL). The CH₂Cl₂ solution was kept stirring for few minutes over Na₂SO₄, then filtered on a celite bed and finally evaporated to dryness under vacuum. The white solid residue was 7a (240 mg, 0.59

mmol). The isolated yield, referred to platinum, was 94 %. (Found: C, 26.6; H, 5.6; N, 7.0 %. C₉H₂₃ClN₂OPt requires C, 26.6; H, 5.7; N, 6.9 %). $\delta_{\rm H}$ (CDCl₃) 3.47 (m, 2H, *O*-CH₂-), 3.31 (s, 3H, *O*-CH₃), 2.89 (s, 3H, *N*-CH₃, ³J_{Pt-H} = 51 Hz), 2.78 (m, 2H, *N*-CH₂-), 2.71 (s, 3H, *N*-CH₃, ³J_{Pt-H} = 13 Hz), 2.54 (m, 2H, *N*-CH₂-), 1.62 (m, 2H, *Pt*-CH₂-, ²J_{Pt-H} = 93 Hz).

 $[Pt(\eta^1-C_2H_4OMe)Cl(dip)], 7b; [Pt(\eta^1-C_2H_4OMe)Cl(phen)], 7c; [Pt(\eta^1-C_2H_4OMe)Cl(phen)Cl(phen)], 7c; [Pt(\eta^1-C_2H_4OMe)Cl(phen)Cl($

C₂H₄OMe)Cl(Me₂phen)], 7d. The synthetic procedures were similar to that used for 7a. However, in the present cases, a slightly higher base/platinum ratio and a lower temperature (-20 °C) were used. The used quantities were: MeOH, 5 mL; KOH, 300 mg (5.3 mmol); Zeise's salt, 500 mg (1.29 mmol); dip, 220 mg, or phen·H₂O, 283 mg, or Me₂phen, 297 mg (1.4 mmol in each case). The final products (7b, 7c, and 7d, respectively) have a limited solubility in the reaction medium and precipitate from solutions as yellow powders. After 3-5 hour stirring, the reaction mixture was filtered on a sintered glass filter, the solid was washed with abundant water to eliminate coprecipitated KCl, and dried under vacuum. 500 mg of 7b (1.1 mmol, yield 87 %), 582 mg of 7c (1.24 mmol, yield 96 %), and 280 mg of 7d (0.56 mmol, yield 45 %) were obtained (isolated yields are referred to platinum). {(**7b**) Found: C, 35.3; H, 3.5; N, 6.2 %. C₁₃H₁₅ClN₂OPt requires C, 35.0; H, 3.4; N, 6.3 %). δ_{H} (CDCl₃) 9.59 (d, 1H, CH, ${}^{3}J_{H-H} = 6$ Hz, ${}^{3}J_{Pt-H} = 15$ Hz); 9.23 (d, 1H, CH, ${}^{3}J_{H-H}$ $= 6 \text{ Hz}, {}^{3}\text{J}_{\text{Pt-H}} = 60 \text{ Hz}$; 8.12 (m, 2H, CH); 7.99 (m, 2H, CH); 7.62 (m, 1H, CH); 7.50 (m, 1H, CH); 3.61 (m, 2H, O-CH₂); 3.39 (s, 3H, O-CH₃); 2.22 (m, 2H, Pt-CH₂-, ${}^{2}J_{Pt-H} = 90$ Hz)}; ²¹ {(7c) Found: C, 37.7; H, 2.9; N, 6.3 %. C₁₅H₁₅ClN₂OPt requires C, 38.2; H, 3.2; N, 6.0 %). δ_H(CDCl₃) 9.81 (d, 1H, CH, ${}^{3}J_{H-H} = 6$ Hz, ${}^{3}J_{Pt-H} = 12$ Hz); 9.53 (d, 1H, CH, ${}^{3}J_{H-H} = 6$ Hz, ${}^{3}J_{Pt-H} = 57$ Hz); 8.65 (d, 1H, CH, ${}^{3}J_{H-H} = 9$ Hz); 8.55 (d, 1H, CH, ${}^{3}J_{H-H} = 9$ Hz); 7.95 (m, 3H, CH); 7.81 (d.d., 1H, CH, ${}^{3}J_{H-H} = 9$ Hz, ${}^{3}J_{H-H} = 6$ Hz); 3.70 (m, 2H, CH₂); 3.42 (s, 3H, OCH₃); 2.41 (m, 2H, *Pt*-CH₂, ${}^{2}J_{Pt-H} = 90$ Hz); 21 {(7d) Found: C, 40.5; H, 3.6; N, 5.5 %. C₁₇H₁₉ClN₂OPt requires C, 41.0; H, 3.9; N, 5.6 %). $\delta_{\rm H}(\rm CDCl_3)$ 8.33 (d, 1H, CH, ${}^{3}J_{\rm H-H} = 9$ Hz); 8.28 (d, 1H, CH, ${}^{3}J_{\rm H-H} = 9$ Hz); 7.75 (s, 1H, CH); 7.74 (s,

1H, CH); 7.59 (d, 1H, CH, ${}^{3}J_{H-H} = 9$ Hz); 7.56 (d, 1H, CH, ${}^{3}J_{H-H} = 9$ Hz); 3.71 (m, 2H, *O*-CH₂); 3.33 (s, 3H, *O*-CH₃); 3.19 (s, 3H, *N*-CH₃); 2.98 (s, 3H, *N*-CH₃); 2.33 (m, 2H, *Pt*-CH₂, ${}^{2}J_{Pt-H} = 95$ Hz)}.²¹ [PtCl(η^{2} -C₂H₄)(Me₄en)]BF₄, 8a. Synthesis of 8a can be carried out according to previously described methods.¹⁸

[PtCl(η²-C₂H₄)(dip)]BF₄, 8b. 0.464 g (1.04 mmol) of [Pt(CH₂CH₂OMe)Cl(dip)] (7b) were dissolved in CH₂Cl₂ (250 mL). To the solution was added first absolute EtOH (2.5 mL) and then concentrated HBF₄ (\approx 70 % in H₂O) until pH ~ 1. During the acidification process the colour of the solution turned from yellow to pale yellow and a light yellow precipitate separated out. The solvent was evaporated under vacuum (no heating was applied to the reaction vessel) and from time to time absolute EtOH was added to the mixture so that the volume of the liquid phase never became less than 25 mL (in this way all the CH₂Cl₂ could be removed while the residual EtOH prevented the concentration of excess HBF₄ to reach levels that could have caused product decomposition). The precipitate was separated by filtration of the solution, washed with abundant absolute ethanol (until the apparent pH of the washing ethanol was neutral) and dried. 469 mg (0.93 mmol) of **8b** were obtained; the isolated yield, referred to platinum, was 90 %. (Found: C, 28.1; H, 2.4; N, 5.7 %. C₁₂H₁₃BCIF₄N₂Pt requires C, 28.7; H, 2.6; N, 5.6 %). δ_H(d₆-Acetone) 9.47 (d, 1H, CH, ³J_{H-H} = 6 Hz, ³J_{Pt-H} = 36 Hz); 8.85 (d, 1H, CH, ³J_{H-H} = 6 Hz); 8.78 (d, 1H, CH, ³J_{H-H} = 9 Hz); 8.71 (t, 1H, CH, ³J_{H-H} = 54 Hz).²¹

[PtCl(η²-C₂H₄)(phen)]BF₄, 8c. The preparative procedure was analogous to that used for 8b. Being 7c less soluble in chlorinated solvents than 7b, 504 mg (1.07 mmol) of [Pt-(CH₂CH₂OMe)Cl(phen)] required 500 ml of CH₂Cl₂ to be completely dissolved. All the operations were performed as described for 8b. 532 mg (1.01 mmol) of 8c were obtained; the isolated yield, referred to platinum, was 94 %. (Found: C, 31.5; H, 2.3; N, 5.4 %. C₁₄H₁₃BClF₄N₂Pt requires C, 31.9; H, 2.5; N, 5.3 %). $\delta_{\rm H}$ (d₆-Acetone) 9.71 (d, 1H, CH, ³J_{H-H} = 6 Hz, ³J_{Pt-H} = 36 Hz); 9.33 (d, 1H, CH, ${}^{3}J_{H-H} = 8$ Hz); 9.21 (d, 1H, CH, ${}^{3}J_{H-H} = 9$ Hz); 9.04 (d, 1H, CH, ${}^{3}J_{H-H} = 6$ Hz, ${}^{3}J_{Pt-H} = 38$ Hz); 8.5 (m, 3H, 3CH); 8.28 (d.d., 1H, CH, ${}^{3}J_{H-H} = 8$ Hz, ${}^{3}J_{H-H} = 6$ Hz); 5.45 (s, 4H, 2CH₂, ${}^{3}J_{Pt-H} = 60$ Hz).²¹

Notes and references

- 20 Chock, J. Halpern and F. E. Paulik, Inorg. Synth., 1990, 28, 349.
- 21 The small splitting due to ${}^{4}J_{H-H}$ has been neglected.