Experimental section:

The $\mathrm{SiO}_{2} @ \mathrm{ZrO}_{2}$ core-shell binary exotemplates were prepared according a method described elsewhere (see ref. 5) and used without further treatment. The synthesis of the composites is briefed as follows: The shell mesopores of the $\mathrm{SiO}_{2} @ \mathrm{ZrO}_{2}$ core-shell template were selectively filled with an organic monomer, in the presence of a polymerization catalyst, by the incipient wetness method at room temperature. The monomers were subsequently converted in a polymer by thermal treatment. Specifically for carbons, furfuryl alcohol (FA) was chosen as the organic monomer, with oxalic acid as a catalyst ($\mathrm{FA} / \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ molar ratio ~ 30), in an ethanol/ether mixture. Initial loadings of FA were varied from 100 to 200% relative to the pore volume of the binary template used (typically $0.065 \mathrm{cc} / \mathrm{g}$). The samples were then subjected to freeze-vacuumthaw cycles using liquid N_{2} in order to remove air, facilitating diffusion of FA in the pore system. After 1 hour at $35^{\circ} \mathrm{C}$ under vacuum, FA was polymerized overnight at $90^{\circ} \mathrm{C}$ under air. Finally, the polymerized alcohol was converted to carbon at $800^{\circ} \mathrm{C}$ under vacuum. In the case of vinyl-based polymer core-shell composites, the preparation is derived from the precedure published recently for polymer-silica mesoporous composites (see ref. 13), with incipient wetness impregnation of a vinyl monomer, a cross-linking monomer (ethylene glycol dimethacrylate, for example) and a radical iniator, together in diethyl ether. A typical polymer loading employed corresponds to $5 \mathrm{wt} \%$. After impregnation, the materials were dried at $40^{\circ} \mathrm{C}$ during 3 h . The samples were subsequently heated under reduced pressure for polymerization. To remove components of the core-shell binary template, the particles are either treated with a 1 N solution of NaOH at $50^{\circ} \mathrm{C}$, or specific amouts of diluted HF to remove only the ZrO_{2} from the shell and an excess to complete remove the template.
Nitrogen physisorption measurements were performed at 77 K using a Micromeretics ASAP 2010 adsorption unit. SEM pictures were taken with a Hitachi S3500N scanning electron microscope at 25 kV . Elemental analyses were performed with an Oxford INCA EDX-system. TEM pictures were obtained with a Hitachi $\mathrm{H}-7500$ microscope operated at 100 kV .

Figure S1. TEM-image of one $\mathrm{SiO}_{2} @ \mathrm{ZrO}_{2}$, C sphere (top) and EDX-line-scan in total counts at different positions (bottom).

Figure S2. Sorption isotherms of $\mathrm{SiO}_{2} @ \mathrm{ZrO}_{2}$, PMAA before (bottom) and after (top) the removal of the siliceous core. Inset: SEM-image of @ZrO ${ }_{2}$,PMAA.

Figure S3. FT-IR spectrum of @ZrO ${ }_{2}$,PMAA: $v_{\max } / \mathrm{cm}^{-1} 2855,2925$ and 2955 (aliphatic backbone), $1711(\mathrm{CO})$, and $1633\left(\mathrm{H}_{2} \mathrm{O}\right)$.

