Supporting information

Achiral Ligand for Perfect Enantiocontrol by Chiral Diamine: Asymmetric Transfer Hydrogenation by Rhodium Catalyst with Achiral Benzophenone Ligand

Koichi Mikami*, Kazuki Wakabayashi, Yukinori Yusa, and Kohsuke Aikawa [*] Department of Applied Chemistry, Tokyo Institute of Technology O-okayama, Meguro-ku, Tokyo 152-8552, Japan Tel: 81-3-5734-2142, Fax: 81-3-5734-2776

E-mail: kmikami@o.cc.titech.ac.jp

<Experimental Part>

General. ¹H and ³¹P NMR spectra were measured on a Varian GEMINI 2000 (300MHz) and Varian UNITY INOVA (400MHz) spectrometers. Chemical shifts of ¹H NMR were expressed in parts per million downfield from tetramethylsilane as an internal standard (δ = 0) in CDCl₃. Chemical shifts of ³¹P NMR were expressed in parts per million downfield from 85% H₃PO₄ as an external standard (δ = 0) in CDCl₃. Capillary GC analyses were conducted on a Shimadzu GC-14B instrument equipped with flame ionization detector by using N₂ (75 kPa) as a carrier gas. Peak areas were calculated by a Shimadzu C-R6A as an automatic integrator; a chiral column was CP-Cyclodextrin- β -2,3,6-M-19 (i.d. 0.25 mm x 25 m; Chrompack, GL Sciences, Tokyo). Analytical TLC was performed on glass plates (Merck Kieselgal 60 F₂₅₄; layer thickness, 0.25 and 0.2 mm). Visualization was accomplished by UV light (254 nm) and anisaldehyde. Column chromatography was performed on Kanto Silica Gel 60N (spherical, neutral; Kanto Chemical Co., Tokyo).

Preparation of [Rh(dpbp)(cod)]SbF₆ [1]. To a mixture of [Rh(cod)₂]SbF₆ (55.5 mg, 0.1 mmol) and DPBP (55.0 mg, 0.1 mmol) was added CH₂Cl₂ (2 ml) at room temperature under argon atmosphere in Schlenk tube. After stirred for 5 h at room temperature, the reaction mixture concentrated under reduced pressure. The residue was washed with Et₂O (5 ml x 3) under argon atmosphere to give [Rh(dpbp)(cod)]SbF₆ [1].

¹H NMR (CDCl₃, 300 MHz) δ 2.14 (d, *J* = 6.3 Hz, 4H), 2.33 (d, *J* = 6.3 Hz, 4H), 4.45 (br, 4H), 7.24-7.54 (m, 28H); ³¹P NMR (CDCl₃, 162 MHz) δ 24.94 (d, *J*_{P-Rh} = 147 Hz, 2P).

Anal. Calcd for C₄₅H₄₀F₆OP₂RhSb 1/2CH₂Cl₂ H₂O: C, 51.66; H, 4.10%. Found: C, 51.53; H, 3.83%.

Preparation of [Rh(dpbp){(S,S)-dpen}]SbF₆ [3]. To a mixture of $[Rh(dpbp)(cod)]SbF_6$ (10.0 mg, 0.01 mmol) and (S,S)-dpen (2.1 mg, 0.01 mmol) was added $(CH_2Cl)_2$ (1 ml) at room temperature under argon atmosphere in Schlenk tube. A mixture was frozen and charged with hydrogen using balloon (1 atm), then stirred for 30 min at room temperature. Then the reaction mixture was concentrated under reduced pressure, to give $[Rh(dpbp){(S,S)-dpen}]SbF_6$ (3).

¹H NMR (CDCl₃, 300 MHz) §1.67 (br, 1H), 1.89 (br, 1H), 2.84 (br, 1H), 3.23 (br, 1H), 3.94 (br, 1H), 4.39 (br, 1H), 5.98-6.05 (m, 2H), 6.48-6.52 (m, 2H), 6.88-8.30 (m, 34H); ³¹P NMR (CDCl₃, 162 MHz) δ 47.28 (dd, *J*_{P-P} = 44.9 Hz, *J*_{P-Rh} = 155 Hz, 1P), 57.40 (dd, *J*_{P-P} = 44.9 Hz, *J*_{P-Rh} = 158 Hz, 1P).

Anal. Calcd for C₅₁H₄₄F₆N₂OP₂RhSb: C, 55.61; H, 4.03; N, 2.54%. Found: C, 55.48; H, 4.31; N, 2.19%.

Typical procedure for Rh-catalyzed hydrogenation of ketones.

Table2, entry 1 and 3: To a solution of $[Rh(dpbp){(S,S)-dpen}]$ SbF₆ (11.0 mg, 0.01 mmol) in 2-propanol (3.6 ml) and 0.1 M of ^tBuOK/2-propanol (0.6 ml, 0.06 mmol) at room temperature under argon atmosphere in Schlenk tube. After stirred for 20 min at room temperature, the reaction mixture was added ketone (0.33 mmol) and stirred for 24 h at room temperature under Ar atmosphere. After the reaction mixture was concentrated under reduced pressure, the residue was filtered through a short column of silica gel (hexane/ethyl acetate = 1/3) to give alcohol products.

Table2, entry 5 and 7: To a solution of $[Rh(dpbp){(S,S)-dpen}]$ SbF₆ (11.0 mg, 0.01 mmol) in $(CH_2Cl)_2$ (0.23 ml) was added 2-propanol (3.6 ml) and 0.1 M of ^tBuOK/2-propanol (0.6 ml, 0.06 mmol) at room temperature under argon atmosphere in Schlenk tube. After stirred for 20 min at room temperature, the reaction mixture was added ketone (0.33 mmol) and stirred for 24 h at room temperature under Ar atmosphere. After the reaction mixture was concentrated under reduced pressure, the residue was filtered through a short column of silica gel (hexane/ethyl acetate = 1/3) to give alcohol products.

<Table Part>

$\underbrace{\begin{array}{c} O \\ H \\ \hline \\ \hline$			
entry	Co-solvent	ee [%]	conversion [%]
1	-	63	98
2	toluene	37	99
3	THF	48	>99
4 ^a	dichlorometane	68	99
5	o-dichlorobenzene	72	>99
6	1,2-dichloroethane	86	96
7 ^b	1,2-dichloroethane	89	97

Table S1. Transfer hydrogenation in a variety of solvents.

^a The same conditions as in Table 1. ^b At room temperature.