Supporting Information for

An Iterative Route To "Decorated" Ethylene Glycol-based Linkers

Genliang Lu, Sang Lam and Kevin Burgess*

Texas A & M University, Chemistry Department, P.O. Box 30012, College Station

Texas 77842, USA.

burgess@tamu.edu

Table of Contents

	Page
General Experimental	S2
Synthesis and Characterization Data for Compounds 1-14.	S2-S10
Outline of Calculations	S 11
References	S11
Copies of ¹ H NMR and ¹³ C NMR Spectra of Compounds 1-3 and 5-14 .	S12 - S24

General Experimental

Unless otherwise indicated, all NMR data were collected at room temperature in CDCl₃ with internal CHCl₃ as the reference (δ 7.27 ppm for ¹H and 77.00 ppm for ¹³C). MS were measured under ESI, MALDI or APCI conditions. Analytical thin-layer chromatography (TLC) was carried out on commercial Merck silica gel 60 plates, 0.25 μ m thickness, with fluorescent indicator (F-254) or stained with aqueous KMnO₄ solution. Column chromatography was performed with 40-63 μ m silica gel. Tetrahydrofuran (THF) was freshly distilled from sodium/benzophenone; other solvents were used as received. Unless otherwise specified, all reactions were carried out under an atmosphere of dry nitrogen in oven-dried (at least 6 h at 140 °C) glassware.

2-(2-{2-[2-(4-Methylbenzenesulfonyl)ethoxy]ethoxy]ethyl}isoindole-1,3-dione (2). To a solution of 2-{2-[2-(2-hydroxyethoxy)ethoxy]ethyl}isoindole-1,3-dione¹ (12.00 g, 42.97 mmol), triethylamine (11.9 mL, 86.0 mmol) and trimethylamine hydrochloride (0.41 g, 4.30 mmol) in acetonitrile (100 mL) was added *p*-toluenesulfonyl chloride (12.29 g, 64.46 mmol) slowly at 0 °C under nitrogen. The mixture was stirred at 0 °C for 20 min and at room temperature for 40 min under nitrogen. The reaction mixture was poured into water, extracted with EtOAc and dried over Na₂SO₄. The crude product was purified by flash chromatography eluting with EtOAc/hexane (1 : 3) and EtOAc/hexane (1 : 1) to afford **2** (17.81 g, 96%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.78 (d, *J* = 7.0 Hz, 2 H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.33 (d, *J* = 7.5 Hz, 2 H), 4.09 (t, *J* = 4.8 Hz, 2 H), 3.87 (t, *J* = 5.8 Hz, 2 H), 3.69 (t, *J* = 6.0 Hz, 2 H), 3.62 (t, *J* = 4.8 Hz, 2 H), 3.58-3.56 (m, 2 H), 3.53-3.51 (m, 2 H), 2.44 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 144.7, 133.9, 132.9, 132.0, 129.8, 127.9, 123.2, 70.6, 70.0, 69.1, 68.6, 67.9, 37.2, 21.6; HRMS (ESI) calcd for C₂₁H₂₄NO₇S (M+H)⁺ 434.1273, found 434.1244.

General Procedure for the Synthesis of TEG Linkers 1, 6, 8 and 10. To a solution of tosylate (1.0 mmol) in acetonitrile was added sodium azide (3.0-5.0 mmol). The mixture was refluxed for 40-48 h under N₂. The suspension was cooled, diluted with water and extracted with CH_2Cl_2 . The combined organic layers were dried over MgSO₄ and evaporated to yield TEG linkers as yellow oils.

2-{2-[2-(2-Azidoethoxy)ethoxy]ethyl}isoindoline-1,3-dione (1). Treatment of **2** (6.502 g, 15.00 mmol) and sodium azide (2.925 g, 45.00 mmol) in acetonitrile (35 mL) for 48 h afforded **1** (4.16 g, 91%) as a pale yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.72 (dd, *J* = 5.5, 3.0 Hz, 2 H), 3.91 (t, *J* = 4.5 Hz, 2 H), 3.76 (t, *J* = 4.8 Hz, 2 H), 3.67-3.65 (m, 2 H), 3.63-3.61 (m, 4 H), 3.31 (t, *J* = 5.0 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 133.9, 132.1, 123.2, 70.6, 70.1, 70.0, 68.0, 50.6, 37.2; MS (APCI, m/z) 305 (M+H)⁺; HRMS (ESI) calcd for C₁₄H₁₆N₄O₄ (M+H)⁺ 305.1250, found 305.1239.

2-[2-(2-{2-[4-({2-[2-(2-Azidoethoxy)ethoxy]ethoxy}methyl)-1H-1,2,3-triazol-1-

yl]ethoxy}ethoxy)ethyl]isoindoline-1,3-dione (6). Treatment of **5** (3.90 g, 6.0 mmol) and sodium azide (1.17 g, 18.0 mmol) in acetonitrile (40 mL) for 40 h afforded **6** (2.89 g, 93%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (dd, J = 5.0, 3.0 Hz, 2 H), 7.73 (s, 1 H), 7.73 (dd, J = 5.0, 3.0 Hz, 2 H), 4.69 (s, 2 H), 4.47 (t, J = 5.0 Hz, 2 H), 3.91 (t, J = 5.5 Hz, 2 H), 3.81 (t, J = 5.0 Hz, 2 H), 3.73 (t, J = 5.0 Hz, 2 H), 3.72-3.66 (m, 10 H), 3.63-3.61 (m, 2 H), 3.58-3.55 (m, 2 H), 3.38 (t, J = 5.0 Hz, 2 H); ¹³C NMR (125 MHz,

CDCl₃) δ 168.2, 144.9, 140.0, 132.0, 123.8, 123.2, 70.63, 70.59, 70.57, 70.48, 70.0, 69.9, 69.6, 69.4, 68.0, 64.5, 50.6, 50.1, 37.2, several signals account for more than one carbon; MS (MALDI, m/z) 540 (M+Na)⁺; HRMS (ESI) calcd for C₂₃H₃₂N₇O₇ (M+H)⁺ 518.2363, found 518.2360.

2-(2-{2-[2-(4-{[2-(2-{2-[4-({2-[2-(2-Azidoethoxy)ethoxy]ethoxy}methyl)-1*H*-1,2,3triazol-1-yl]ethoxy}ethoxy)ethoxy]methyl}-1*H*-1,2,3-triazol-1-yl)ethoxy]ethoxy}-

ethyl)isoindoline-1,3-dione (8). Treatment of **7** (2.15 g, 2.50 mmol) and sodium azide (0.488 g, 7.5 mmol) in acetonitrile (13 mL) for 40 h afforded **8** (1.758 g, 96%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.72 (s, 1 H), 7.70 (s, 1 H), 7.70 (dd, *J* = 5.5, 3.0 Hz, 2 H), 4.65 (s, 4 H), 4.50 (t, *J* = 5.0 Hz, 2 H), 4.44 (t, *J* = 5.0 Hz, 2 H), 3.87 (t, *J* = 5.8 Hz, 2 H), 3.84 (t, *J* = 5.0 Hz, 2 H), 3.78 (t, *J* = 5.0 Hz, 2 H), 3.71-3.53 (m, 24 H), 3.36 (t, *J* = 5.3 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 144.8, 144.7, 134.0, 132.0, 123.76, 123.74, 123.2, 70.56, 70.52, 70.50, 70.43, 70.40, 70.37, 69.9, 69.8, 69.54, 69.49, 69.38, 69.36, 67.9, 64.5, 64.4, 50.6, 50.1, 50.0, 37.1, several signals account for more than one carbon; MS (MALDI, m/z) 731 (M+Na)⁺; HRMS (ESI) calcd for C₃₂H₄₇N₁₀O₁₀ (M+H)⁺ 731.3477, found 731.3481.

2-{2-[2-(2-{4-[(2-{2-[2-(4-{[2-(2-{2-[4-({2-[2-(2-Azidoethoxy)ethoxy]ethoxy}methyl)-1*H*-1,2,3-triazol-1-yl]ethoxy}ethoxy]methyl}-1*H*-1,2,3-triazol-1-yl)ethoxy]ethoxy}ethoxy)methyl]-1*H*-1,2,3-triazol-1-yl}ethoxy)ethoxy]ethyl}isoindoline-1,3dione (10). Treatment of 9 (0.215 g, 0.20 mmol) and sodium azide (0.065 g, 1.0 mmol) in acetonitrile (4 mL) for 40 h afforded 10 (0.145 g, 77%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.72-7.69 (m, 5 H), 4.64 (s, 4 H), 4.63 (s, 2 H), 4.50 (t, *J* = 5.0 Hz, 4 H), 4.44 (t, *J* = 5.0 Hz, 2 H), 3.87 (t, *J* = 5.8 Hz, 2 H), 3.84 (t, J = 5.0 Hz, 4 H), 3.78 (t, J = 5.0 Hz, 2 H), 3.71-3.51 (m, 32 H), 3.36 (t, J = 5.0 Hz, 2 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 144.8, 144.7, 134.0, 132.0, 128.5, 125.9, 123.82, 123.79, 123.2, 70.61, 70.57, 70.55, 70.48, 70.46, 70.42, 70.0, 69.9, 69.6, 69.5, 69.42, 69.41, 68.0, 64.5, 64.44, 64.43, 50.6, 50.15, 50.12, 37.1, several signals account for more than one carbon; HRMS (ESI) calcd for $C_{41}H_{62}N_{13}O_{13}$ (M+H)⁺ 944.4584, found 944.4586. $2-\{2-[2-(Prop-2-ynyloxy)ethoxy]ethoxy\}ethanol (4)^2$. To a solution of triethylene glycol (15.02 g, 100 mmol) in distilled THF (75 mL) at 0 °C under nitrogen was added sodium hydride (2.60 g, 65 mmol, 60%) slowly. The mixture was stirred at 0 °C for 30 min under nitrogen. Propargyl bromide (5.40 mL, 7.44 g, 50 mmol) was injected slowly to the reaction flask. The mixture was stirred at 0 °C for 2 h and at 25 °C for 20 h. The mixture was poured into water, extracted with CH₂Cl₂ and dried over Na₂SO₄. The crude product was purified by flash chromatography eluting with EtOAc/hexane (3:2) to afford 4 as a yellow oil (7.102 g, 75%). ¹H NMR (500 MHz, CDCl₃) δ 4.19 (d, J = 2.5 Hz, 2H), 3.71 (t, *J* = 6.0 Hz, 2H), 3.60-3.70 (m, 8H), 3.59 (t, *J* = 5.5 Hz, 2H), 2.61 (s, 1H), 2.43 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 79.5, 74.6, 72.4, 70.5, 70.3, 70.2, 69.0, 61.6, 58.3.

2-{2-[2-(Prop-2-ynyloxy)ethoxy]ethoxy]ethoxy}ethyl 4-methylbenzenesulfonate (3). To a solution of 4 (10.28 g, 54.62 mmol), triethylamine (19.0 mL, 136.5 mmol) and trimethylamine hydrochloride (0.522 g, 5.46 mmol) in acetonitrile (140 mL) was added p-toluenesulfonyl chloride (20.82 g, 109.24 mmol) slowly at 0 °C under nitrogen. The mixture was stirred at 0 °C for 50 minutes and at room temperature for 30 min under nitrogen. The reaction mixture was poured into water, extracted with EtOAc and dried over MgSO₄. The crude product was purified by flash chromatography eluting with

EtOAc/hexane (1 : 3) to afford **3** (16.19 g, 87%) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 7.79 (d, *J* = 8.5 Hz, 2 H), 7.34 (d, *J* = 8.5 Hz, 2 H), 4.19 (d, *J* = 2.0 Hz, 2H), 4.15 (t, *J* = 5.0 Hz, 2H), 3.67-3.69 (m, 4H), 3.64-3.65 (m, 2H), 3.59 (s, 4H), 2.45 (s, 3H), 2.43 (t, *J* = 2.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 144.7, 132.9, 129.8, 127.9, 79.6, 74.5, 70.7, 70.5, 70.4, 69.2, 69.0 68.6, 58.3, 21.6; MS (APCI, m/z) 365 (M+Na)⁺; HRMS (ESI) calcd for C₁₆H₂₃O₆S (M+H)⁺ 343.1215, found 343.1194.

General Procedure for the Synthesis of TEG Linkers 5, 7, 9, 13 and 14. To a solution of azide 1 (6, 8 or 10) (1.0 mmol) and alkyne (1.0-1.3 mmol) in THF (2.5 mL) under nitrogen was added copper turnings (0.064 g), H_2O (2.5 mL) and $CuSO_4$ (0.20 mL, 0.20 mmol, 1.0 N in H_2O). The reaction mixture was stirred at 25 °C under nitrogen for 17-48 h. The solvents were removed under reduced pressure and the crude product was purified by flash chromatography over silica to afford TEG Linkers as yellow oils.

$2-\{2-[2-(2-\{4-[(2-\{2-[2-(4-Methylbenzenesulfonyl)ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy[ethoxy]ethoxy[ethoxy[ethoxy]ethoxy[ethoxy[ethoxy[ethoxy]ethoxy[$

1,2,3-triazol-1-yl}ethoxy)ethoxy]ethyl}isoindoline-1,3-dione (5). Treatment of **1** (1.826 g, 6.00 mmol) and **3** (2.67 g, 7.80 mmol) for 20 h according to the general procedure described above, eluting with EtOAc/hexane (3 : 1) and EtOAc to afford **5** (3.90 g, 100 %) as a yellow oil. ¹H NMR (CDCl₃, 500 MHz) δ 7.85 (dd, *J* = 5.0, 3.0 Hz, 2 H), 7.79 (d, *J* = 8.5 Hz, 2 H), 7.75 (s, 1 H), 7.73 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.34 (d, *J* = 8.5 Hz, 2 H), 4.68 (s, 2 H), 4.46 (t, *J* = 5.3 Hz, 2 H), 4.15 (t, *J* = 5.0 Hz, 2 H), 3.90 (t, *J* = 5.8 Hz, 2 H), 3.80 (t, *J* = 5.0 Hz, 2 H), 3.72 (t, *J* = 5.8 Hz, 2 H), 3.67-3.70 (m, 4 H), 3.61-3.64 (m, 2 H), 3.56-3.60 (m, 8 H), 2.45 (s, 3 H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.2, 144.8, 134.0, 132.9, 132.0, 129.8, 127.9, 123.9, 123.2, 70.7, 70.52, 70.49, 70.48, 69.9, 69.6, 69.4, 69.2, 68.6, 68.0, 64.4, 50.8, 50.2, 37.2, 21.6, several signals account for

more than one carbon; MS (ESI, m/z) 647 (M+H)⁺; HRMS (ESI) calcd for $C_{30}H_{39}N_4O_{10}S$ (M+H)⁺ 647.2387, found 647.2396.

2-[2-(2-{2-[4-({2-[2-(2-{4-[(2-{2-[2-(4-Methylbenzenesulfonyl)ethoxy]ethoxy}ethoxy)methyl]-1*H*-1,2,3-triazol-1-yl}ethoxy)ethoxy]ethoxy}methyl)-1*H*-1,2,3-triazol-1yl]ethoxy}ethoxy)ethyl)]isoindoline-1,3-dione (7). Treatment of **6** (1.035 g, 2.00 mmol) and **3** (0.684 g, 2.0 mmol) for 20 h according to the general procedure described above, eluting with EtOAc/MeOH (10 : 1) and EtOAc/MeOH (10/2) to afford **7** (1.457 g, 85 %) as a yellow oil. ¹H NMR (CDCl₃, 300 MHz) δ 7.84 (dd, *J* = 6.0 Hz, 3.0 Hz, 2 H), 7.79 (d, *J* = 8.4 Hz, 2 H), 7.75 (s, 1 H), 7.73 (s, 1 H), 7.72 (dd, *J* = 6.0 Hz, 3.5 Hz, 2 H), 7.33 (d, *J* = 8.5 Hz, 2H), 4.67 (s, 2 H), 4.66 (s, 2 H), 4.52 (t, *J* = 5.0 Hz, 2 H), 4.45 (t, *J* = 5.0 Hz, 2 H), 4.17-4.14 (m, 2 H), 3.91-3.86 (m, 4 H), 3.80 (t, *J* = 5.3 Hz, 2 H), 3.70-3.55 (m, 24 H), 2.44 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.2, 144.8, 144.7, 134.0, 132.9, 132.0, 129.8, 128.4, 127.9, 125.8, 123.8, 123.2, 70.6, 70.45, 70.43, 70.41, 70.37, 69.8, 69.5, 69.4, 69.2, 68.6, 67.9, 64.5, 64.4, 50.11, 50.09, 37.2, 21.6, several signals account for more than one carbon; MS (MALDI, m/z) 860 (M+Na)⁺; HRMS (ESI) calcd for C₃₉H₅₄N₇O₁₃S (M+H)⁺ 860.3500, found 860.3496.

 $2-(2-{2-[2-(4-{[2-(2-{2-[4-({2-[2-(2-{4-[(2-{2-[2-(4-Methylbenzenesulfonyl)ethoxy]-ethoxy}ethoxy}]ethoxy}]ethoxy}]ethoxy}]ethoxy}]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl}ethoxy]ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl]ethoxy]ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl]ethoxy]ethoxy]ethoxy]ethoxy}methyl]-1H-1,2,3-triazol-1-yl]ethoxy[ethoxy]ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy]ethoxy[ethoxy[ethoxy]ethoxy[ethoxy[ethoxy]ethoxy[ethoxy[ethoxy[ethoxy]ethoxy[etho$

1,2,3-triazol-1-yl]ethoxy}ethoxy)ethoxy]methyl}-1H-1,2,3-triazol-1-

yl)ethoxy]ethoxy]ethyl)isoindoline-1,3-dione (9). Treatment of **8** (0.730 g, 1.00 mmol) and **3** (0.445 g, 1.3 mmol) for 42 h according to the general procedure described above, eluting with CHCl₃/MeOH (95 : 5) to afford **9** (0.854 g, 80 %) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.77 (d, *J* = 8.5 Hz, 2 H), 7.74 (s, 1

H), 7.73 (s, 1 H), 7.71 (s, 1 H), 7.71 (dd, J = 5.5, 3.0 Hz, 2 H), 7.32 (d, J = 8.5 Hz, 2 H), 4.66 (s, 2 H), 4.64 (s, 4 H), 4.51 (t, J = 5.3 Hz, 4 H), 4.45 (t, J = 5.0 Hz, 2 H), 4.13 (t, J =4.8 Hz, 2 H), 3.88 (t, J = 5.8 Hz, 2 H), 3.85 (t, J = 5.3 Hz, 4 H), 3.79 (t, J = 5.3 Hz, 2 H), 3.71 (t, J = 5.8 Hz, 2H), 3.69-3.65 (m, 8 H), 3.62-3.59 (m, 16 H), 3.56-3.54 (m, 6 H), 2.43 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 144.8, 144.7, 134.0, 132.9, 132.0, 129.8, 127.9, 123.8, 123.2, 70.7, 70.48, 70.46, 70.45, 70.40, 69.9, 69.5, 69.4, 69.2, 68.6, 68.0, 64.5, 64.49, 64.44, 64.43, 50.15, 50.12, 37.2, 21.6, several signals account for more than one carbon; MS (MALDI, m/z) 1095.5 (M+Na)⁺; HRMS (ESI) calcd for C₄₈H₆₉N₁₀O₁₆S (M+H)⁺ 1073.4614, found 1073.4664.

tert- **Butyl** 2-{2-[2-(2-{[1-(2-{2-[2-(1,3-dioxo-1,3-dihydro-2*H*-isoindol-2-y])ethoxy]ethoxy}ethyl)-1*H*-1,2,3-triazol-4-yl]methoxy}ethoxy)ethoxy]ethoxy]acetate (13). Treatment of **6** (0.525 g, 1.015 mmol) and **12** (0.393 g, 1.3 mmol) for 17 h according to the general procedure described above, eluting with CHCl₃/MeOH (95 : 5) to afford **13** (0.760 g, 91 %) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.81 (s, 1 H), 7.72 (s, 1 H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2 H), 4.66 (brs, 4 H), 4.53 (brs, 2 H), 4.46 (t, *J* = 4.8 Hz, 2 H), 4.01 (s, 2 H), 3.89-3.85 (m, 4 H), 3.80 (t, *J* = 5.0 Hz, 2 H), 3.71-3.54 (m, 26 H), 1.46 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 169.6, 168.2, 134.0, 132.0, 123.2, 81.4, 70.6, 70.5, 70.46, 70.42, 70.40, 69.8, 69.6, 69.5, 68.9, 67.9, 64.4, 50.3, 37.1, 28.0, several signals account for more than one carbon; HRMS (ESI) calcd for C_{38H58N7}O₁₃ (M+H)⁺ 820.4093, found 820.4077.

5-[2-(2-{2-[{1-[2-(2-{2-[(1-{2-[2-(2-{[1-(2-{2-[2-(1,3-Dioxo-1,3-dihydro-2*H*-isoindol-2yl)ethoxy]ethoxy}ethyl)-1*H*-1,2,3-triazol-4-yl]methoxy}ethoxy]ethyl}-1*H*-1,2,3-triazol-4-yl)methoxy]ethoxy}ethoxy)ethyl]-1*H*-1,2,3-triazol-4-yl}methoxy]-

ethoxy}ethoxy)ethyl]-1H-1,2,3-triazol-4-yl]pentanoic acid (14). Treatment of 10 (0.110 g, 0.117 mmol), 6-heptynoic acid (0.044 g, 0.350 mmol), copper turnings (20 mg), CuSO₄ (0.10 mL, 1 N), THF (2 mL) and water (2 mL) for 48 h according to the general procedure described above, eluting with MeOH to afford 14 (0.030 g, 24 %) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.5 Hz, 2 H), 7.78 (s, 1 H), 7.74 (s, 1 H), 7.73 (s, 1 H), 7.71 (dd, J = 5.5, 3.5 Hz, 2 H), 7.55 (s, 1 H), 4.68 (s, 2H), 4.67 (s, 2 H), 4.66 (s, 2 H), 4.54-4.51 (m, 4 H), 4.49 (t, J = 5.5 Hz, 2 H), 4.46 (t, J = 5.0 Hz, 2 H), 3.89 (t, J = 5.8 Hz, 2 H), 3.86 (t, J = 4.8 Hz, 4 H), 3.83 (t, J = 4.8 Hz, 2 H), 3.79 (t, J = 5.3 Hz)2 H), 3.71 (t, J = 5.8 Hz, 2 H), 3.70-3.66 (m, 6 H), 3.63-3.54 (m, 22 H), 2.74 (t, J = 6.8 Hz, 2 H), 2.37 (t, J = 6.8 Hz, 2 H), 1.76-1.67 (m, 4 H); ¹³C NMR (125 MHz, CDCl₃) δ 175.7, 168.2, 147.6, 144.7, 144.5, 134.0, 132.0, 124.2, 123.9, 123.2, 122.2, 70.6, 70.45, 70.42, 70.40, 70.37, 69.9, 69.5, 69.4, 69.39, 69.38, 69.33, 68.0, 64.36, 64.31, 64.0, 50.3, 50.2, 50.1, 37.2, 33.7, 28.6, 25.3, 24.3, several signals account for more than one carbon; MS (MALDI, m/z) 1070.7 (M+Na)⁺; HRMS (ESI) calcd for $C_{48}H_{72}N_{13}O_{15}$ (M+H)⁺ 1070.5271, found 1070.5255.

tert-Butyl 2-(2-{2-[2-(prop-2-ynyloxy)ethoxy]ethoxy]ethoxy)acetate (12). To a solution of 4 (2.823 g, 15.00 mmol) in distilled THF (30 mL) at 0 °C under nitrogen was added sodium hydride (0.84 g, 21.0 mmol, 60%) slowly. The mixture was stirred at 0 °C for 30 min. under nitrogen. *tert*-Butyl bromoacetate (4.43 mL, 5.85 g, 30.0 mmol) was injected slowly to the reaction flask. The mixture was stirred at 0 °C for 1 h and at 25 °C for 12 h. The mixture was poured into water, extracted with CH_2Cl_2 and dried over MgSO₄. The crude product was purified by flash chromatography eluting with EtOAc/hexane (1 : 1) to afford **12** as a yellow oil (2.40 g, 53%). ¹H NMR (CDCl₃, 300

MHz) δ 4.21 (d, J = 2.7 Hz, 2 H), 4.03 (s, 2 H), 3.73-3.66 (m, 12 H), 2.43 (t, J = 2.3 Hz, 1 H), 1.48 (s, 9 H); ¹³C NMR (CDCl₃, 125 MHz) δ 169.7, 81.5, 79.6, 74.5, 70.7, 70.59, 70.57 (two carbons), 70.4, 69.1, 69.0, 58.4, 28.1; HRMS (ESI) calcd for C₁₅H₂₆Na (M+Na)⁺ 325.1627, found 325.1637.

tert- Butyl 3-{2-[2-(2-{[1-(2-{2-[2-(1,3-dioxo-1,3-dihydro-2*H*-isoindol-2-yl)ethoxy]ethoxy}ethyl)-1*H*-1,2,3-triazol-4-yl]methoxy}ethoxy]ethoxy]ethyl}tetrahydro-

pyrimidine-1(2*H***)-carboxylate (11).** To a solution of **5** (0.200 g, 0.309 mmol) and mono-Boc-piperazine³ (0.058 g, 0.309 g) in CH₃CN (4 mL) under nitrogen was added K₂CO₃ (0.21 g, 1.55 mmol). The mixture was refluxed for 20 h. The suspension was cooled, diluted with water, extracted with CH₂Cl₂ and dried over MgSO₄. The solvents were removed under reduced pressure and the crude product was purified by flash chromatography over silica eluting with MeOH to afford **11** (0.12 g, 59%) as a yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.0 Hz, 2 H), 7.72 (s, 1 H), 7.71 (dd, *J* = 5.5, 3.0 Hz, 2 H), 4.67 (s, 2 H), 4.45 (t, *J* = 5.0 Hz, 2 H), 3.89 (t, *J* = 5.8 Hz, 2 H), 3.79 (t, *J* = 5.3 Hz, 2 H), 3.71 (t, *J* = 5.8 Hz, 2 H), 3.70-3.59 (m, 12 H), 3.56-3.54 (m, 2 H), 3.43 (t, *J* = 4.8 Hz, 4 H), 2.61 (t, *J* = 5.5 Hz, 2 H), 2.46 (brs, 4 H), 1.44 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃) δ 168.2, 154.6, 144.8, 133.9, 132.0, 123.7, 123.2, 79.5, 70.46, 70.43 (two carbons), 70.3, 69.8, 69.5, 69.4, 68.6, 67.9, 64.5, 57.7, 53.2, 50.1, 43.8, 37.1, 28.3; HRMS (ESI) calcd for C₃₂H₄₉N₆O₉ (M+H)⁺ 661.3561, found 661.3543.

Outline of Approach for Calculations

The following approach was used to obtain estimates of molecular lengths for the extended conformations of the linkers. The molecules were drawn in Chem3D (CambridgeSoft Corp.) in extended forms, then minimized with their molecular mechanics routine. End-to-end lengths of the molecules were measured using the ruler function in Chem3D.

References

- Sato, H.; Hayashi, E.; Yamada, N.; Yatagai, M.; Takahara, Y. *Bioconjugate Chem.* 2001, 12, 701-710.
- (a) Hansen, T. M.; Engler, M. M.; Forsyth, C. J. *Bioorg. Med. Chem. Lett.* 2003, *13*, 2127-2130; (b) Fujii, K.; Hatano, K.; Nakamura, K.; Umeyama, H. Jpn. Kokai Tokkyo Koho, 2001, JP 2001064238. (c) Fujii, K.; Hatano, K.; Oka, A. Jpn. Kokai Tokkyo Koho, 2000, JP 2000355505.
- (a) Wallen, E. A. A.; Christiaans, J. A. M.; Jarho, E. M.; Forsberg, M. M.; Venalainen, J. I.; Mannisto, P. T.; Gynther, J. *J. Med. Chem.* 2003, 46, 4543-4551.
 (b) Carpino, L. A.; Mansour, E. M. E.; Cheng, C. H.; Williams, J. R.; MacDonald, R.; Knapczyk, J.; Carman, M. *J. Org. Chem.* 1983, 48, 661-665.

ppm

11 10 9 8 7 6 5 4 3 2 1 -0 -1 ppm

S24