Supporting Information

David J. Lewis,[†] Thomas M. Day,[‡] Julie V. MacPherson,[‡] and Zoe Pikramenou^{*,†}. [†]School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK [‡]Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

S1.0 Experimental

S1.1. 1, 11-(bis(4-amidothiophenol)-1, 11-dioxo-3, 6, 9-triaza-3,6,9-triscarboxymethyl)undecane: H₃L

H₃L was prepared by adding 4-aminothiophenol (2.0 g, 16.0 mmol) to a stirring suspension of ca.DTPA (1.02 g, 2.8 mmol) in pyridine (10 ml) following the procedure of Konings et al (*Inorg. Chem.*, 1990, **29**, 1488) and affording **H₃L** as a white powder (0.67 g, 40 %). ¹H NMR (300 MHz, *d*₄-MeOH), δ ppm: 7.4 (4H, d, ³J = 8.6 Hz, ArH_g); 7.1 (4H, d, ³J = 8.6 Hz, ArH_f); 4.12 (2H, s, H_a); 3.62 (4H, s, H_d); 3.59 (4H, s, H_e); 3.49 (4H, t, ³J = 5.2 Hz, H_c); 3.22 (4H, t, ³J = 5.2 Hz, H_b). ¹³C PENDANT {¹H} NMR (75 MHz, *d*₄-MeOH), δ ppm: 173, 170, 168 (CO₂H, C_{1,6}; CONH, C₈); 135 (ArCNHCO, C₉); 130 (ArCH, C₁₀); 126 (ArCSH, C₁₂); 121 (ArCH, C₁₁); 59.2 (CH₂, C₅), 56.3 (CH₂, C₇), 55.5 (CH₂, C₂), 55.0 (CH₂, C₄), 51.2 (CH₂, C₃). MS (ES⁺) m/z: 608 {M+H}⁺. Anal. calc. for C₂₆H₄₁N₅O₁₂S₂Cl₃(NH₄Cl)_{0.5}: C, 32.6; H, 4.5; N, 8.1. Found: C, 32.3; H, 4.2; N, 8.0. UV-Vis (MeOH) λ_{max} in nm (log ε) 265 (4.5).

S1.2. Preparation of EuL *via* K₃L

H₃**L** (0.20 g, 0.33 mmol) was dissolved in degassed methanol (5 ml). To the stirred solution, KOH (0.055 g, 0.99 mmol) was added as a methanolic solution (5 ml) and the mixture stirred for 10 minutes. The methanol was then completely evaporated to yield the tripotassium salt, **K**₃**L** in the reaction vessel, which was redissolved in degassed deionised water (5 ml). To the aqueous solution, EuCl₃·6H₂O (0.12 g, 0.33 mmol) was added which caused an immediate precipitation of a white solid, which was isolated by suction filtration and washed with acetone (2 × 10 ml) and diethyl ether (5 ml), and dried under vacuum to yield the complex, **EuL** (0.21 g, 86 %). MS (ES⁺): m/z 758 {M+H}⁺. HRMS calc. for EuC₂₆H₃₁N₅O₈S₂: 758.0826. Found: 758.0833. UV-Vis (MeOH): λ_{max} in nm (log ε) 266 (4.4).

S1.3. Preparation of Gold Colloids

Gold colloids were prepared as per Grabar et. al (Anal. Chem., 1995, 67, 735).

S.1.4. Calculation of Nanoparticle Concentration

It was possible to estimate the concentration of CNPs from TEM experiments. It can be assumed (R. L. Johnston, 'Atomic and Molecular Clusters', Taylor & Francis, **2002**) for large "spherical" metal clusters such as a gold nanoparticle that:

V _{cluster} = NV _{atom}	(eq. 1)
4/3 π (R _{cluster}) ³ = N 4/3 π (R _{atom}) ³	(eq. 2)

Where V is the cluster or atom volume, R is the cluster or atomic radius and N is the total number of atoms within the cluster. Rearranging, we obtain:

$$R_{cluster} = N^{1/3} R_{atom}$$
 (eq. 3)

Knowing the cluster radius we may also calculate the surface (S) area of a nanoparticle with the following equation:

$$S_{cluster} = 4 \pi (R_{cluster})^2$$
 (eq. 4)

For larger clusters, we may also calculate the number of surface atoms, N_s , directly by dividing the surface area of the cluster by the cross section of an individual cluster atom, and then simplifying using the relationship in (eq. 3):

$$N_{s} = (4 \pi (R_{cluster})^{2}) / (\pi (R_{atom})^{2}) = 4 N^{2/3}$$
 (eq. 5)

From the TEM result we know that $R_{cluster} \approx 6.5$ nm, and $R_{atom} = 0.137$ nm. The number of gold atoms per nanoparticle was estimated using (eq. 3):

$$N = (R_{cluster} / R_{atom})^3 = ((6.5 \times 10^{-9}) / (137 \times 10^{-9}))^3$$

N = <u>106 801</u> gold atoms per nanoparticle

The number of surface atoms, N_s , on a single gold nanoparticle was also estimated using (eq. 5):

 $N_s = 4 N^{2/3} = 4 x (106, 801)^{2/3}$

N_s = <u>9004</u> gold surface atoms per nanoparticle

From the calculation of N, the molecular weight (M_w) of a single nanoparticle was calculated using the relative molecular mass of a single gold atom (M_{gold}) :

 $M_w = M_{gold} \times N$

M_w = 196.97 x 106 801

Calculation of the amount of nanoparticles formed (N_{NP}) when 1 dm³ of 1 mM HAuCl₄ is reduced by citrate was then calculated:

Moles of HAuCl₄ = 1 x 1 x 10^{-3} = 1 x 10^{-3} mol

No. of gold atoms, $N_{atom} = 1 \times 10^{-3} \times N_A = 1 \times 10^{-3} \times 6.022 \times 10^{23}$

$$= 6.022 \times 10^{20}$$

 $N_{NP} = N_{atom} / N$

 $N_{NP} = (6.022 \times 10^{20}) / (106 \ 801)$

 $N_{NP} = 5.639 \times 10^{15}$ Nanoparticles formed per 1 x 10⁻³ mol HAuCl₄

Hence the final concentration of the gold colloid, C_{NP} , was estimated by dividing N_{NP} by Avagadro's number (N_A):

 $C_{NP} = N_{NP} / N_A$

 C_{NP} = (5.639 x 10¹⁵) / (6.022 x 10²³)

 $C_{NP} = 9.363 \times 10^{-9} \text{ mol dm}^{-3}$

S2.0 Additional Spectra

Figure S2.1.: 300 MHz ¹H NMR spectrum of H_3^1 (*d*₄-MeOH)

Figure S2.2.: 75 MHz ¹³C {¹H} PENDANT NMR spectrum of H_3L (d_4 -MeOH)

 $\delta\,/\,ppm$

Figure S2.3. : UV-vis absorption spectrum of 0.2 nM aqueous citrate-stabilised Au colloid (solid curve), and after addition of 125 nmol of **TbX** (dashed curve).

Figure S2.4. : UV-vis absorption spectrum of 0.2 nM citrate stabilised gold colloid (2.5 ml) (solid line with cross), after addition of 175 μ l methanol (solid line).

Figure S2.5. : UV-vis spectrum of nanoparticles functionalised with **EuL** after gel filtration chromatography on Sephadex G-15.

