## Supporting Information

David J. Lewis, ${ }^{\dagger}$ Thomas M. Day, ${ }^{\ddagger}$ Julie V. MacPherson, ${ }^{\ddagger}$ and Zoe Pikramenou*, ${ }^{\dagger}$.
${ }^{\dagger}$ School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
${ }^{\dagger}$ Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

## S1.0 Experimental

## S1.1. 1, 11-(bis(4-amidothiophenol)-1, 11-dioxo-3, 6, 9-triaza-3,6,9triscarboxymethyl)undecane: $\mathbf{H}_{3} \mathrm{~L}$

 4-aminothiophenol

$\mathbf{H}_{\mathbf{3}} \mathbf{L}$ was prepared by adding 4-aminothiophenol ( $2.0 \mathrm{~g}, 16.0 \mathrm{mmol}$ ) to a stirring suspension of ca.DTPA ( $1.02 \mathrm{~g}, 2.8 \mathrm{mmol}$ ) in pyridine ( 10 ml ) following the procedure of Konings et al (Inorg. Chem., 1990, 29, 1488) and affording $\mathbf{H}_{3} \mathbf{L}$ as a white powder ( $0.67 \mathrm{~g}, 40 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, d_{4}-\mathrm{MeOH}$ ), $\delta \mathrm{ppm}: 7.4\left(4 \mathrm{H}, \mathrm{d},{ }^{3} J\right.$ $\left.=8.6 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{g}}\right) ; 7.1\left(4 \mathrm{H}, \mathrm{d},{ }^{3} J=8.6 \mathrm{~Hz}, \mathrm{ArH}_{\mathrm{f}}\right) ; 4.12\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{a}}\right) ; 3.62\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{d}}\right)$; $3.59\left(4 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{e}}\right) ; 3.49\left(4 \mathrm{H}, \mathrm{t},{ }^{3} J=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{c}}\right) ; 3.22\left(4 \mathrm{H}, \mathrm{t},{ }^{3} J=5.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}\right) .{ }^{13} \mathrm{C}$ PENDANT $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, d_{4}-\mathrm{MeOH}\right), \delta \mathrm{ppm}: 173,170,168\left(\underline{\mathrm{CO}_{2}} \mathrm{H}, \mathrm{C}_{1,6}\right.$; $\left.\underline{\mathrm{C} O N H}, \mathrm{C}_{8}\right) ; 135$ ( $\mathrm{Ar} \underline{\mathrm{C}} \mathrm{NHCO}, \mathrm{C}_{9}$ ); $130\left(\mathrm{Ar} \underline{\mathrm{C} H}, \mathrm{C}_{10}\right) ; 126$ ( $\mathrm{Ar} \underline{\mathrm{CSH}}, \mathrm{C}_{12}$ ); 121 ( $\mathrm{Ar} \underline{\mathrm{C}} \mathrm{H}$, $\left.\mathrm{C}_{11}\right) ; 59.2\left(\underline{\mathrm{CH}}_{2}, \mathrm{C}_{5}\right), 56.3\left(\underline{\mathrm{CH}}_{2}, \mathrm{C}_{7}\right), 55.5\left(\underline{\mathrm{CH}}_{2}, \mathrm{C}_{2}\right), 55.0\left(\underline{\mathrm{C}}_{2}, \mathrm{C}_{4}\right), 51.2\left(\underline{\mathrm{CH}}_{2}, \mathrm{C}_{3}\right)$. MS (ES $\left.{ }^{+}\right) \mathrm{m} / \mathrm{z}: 608\{\mathrm{M}+\mathrm{H}\}^{+}$. Anal. calc. for $\mathrm{C}_{26} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Cl}_{3}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)_{0.5}$ : C, 32.6; H, 4.5; N, 8.1. Found: C, 32.3; H, 4.2; N, 8.0. UV-Vis (MeOH) $\lambda_{\max }$ in $n m(\log \varepsilon)$ 265 (4.5).

## S1.2. Preparation of EuL via $\mathrm{K}_{3} \mathrm{~L}$

$\mathbf{H}_{3} \mathbf{L}(0.20 \mathrm{~g}, 0.33 \mathrm{mmol})$ was dissolved in degassed methanol $(5 \mathrm{ml})$. To the stirred solution, $\mathrm{KOH}(0.055 \mathrm{~g}, 0.99 \mathrm{mmol})$ was added as a methanolic solution $(5 \mathrm{ml})$ and the mixture stirred for 10 minutes. The methanol was then completely evaporated to yield the tripotassium salt, $\mathbf{K}_{\mathbf{3}} \mathbf{L}$ in the reaction vessel, which was redissolved in degassed deionised water $(5 \mathrm{ml})$. To the aqueous solution, $\mathrm{EuCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~g}, 0.33$ mmol ) was added which caused an immediate precipitation of a white solid, which was isolated by suction filtration and washed with acetone $(2 \times 10 \mathrm{ml})$ and diethyl ether ( 5 ml ), and dried under vacuum to yield the complex, $\mathbf{E u L}(0.21 \mathrm{~g}, 86 \%)$. MS $\left(\mathrm{ES}^{+}\right): \mathrm{m} / \mathrm{z} 758\{\mathrm{M}+\mathrm{H}\}^{+}$. HRMS calc. for $\mathrm{EuC}_{26} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}_{2}$ : 758.0826. Found: 758.0833. UV-Vis (MeOH): $\lambda_{\text {max }}$ in $n m(\log \varepsilon) 266$ (4.4).

## S1.3. Preparation of Gold Colloids

Gold colloids were prepared as per Grabar et. al (Anal. Chem., 1995, 67, 735).

## S.1.4. Calculation of Nanoparticle Concentration

It was possible to estimate the concentration of CNPs from TEM experiments. It can be assumed (R. L. Johnston, 'Atomic and Molecular Clusters', Taylor \& Francis, 2002) for large "spherical" metal clusters such as a gold nanoparticle that:
$\mathrm{V}_{\text {cluster }}=N V_{\text {atom }}$
$4 / 3 \pi\left(R_{\text {cluster }}\right)^{3}=N 4 / 3 \pi\left(R_{\text {atom }}\right)^{3}$
(eq. 2)

Where V is the cluster or atom volume, R is the cluster or atomic radius and N is the total number of atoms within the cluster. Rearranging, we obtain:

Knowing the cluster radius we may also calculate the surface ( S ) area of a nanoparticle with the following equation:
$S_{\text {cluster }}=4 \pi\left(R_{\text {cluster }}\right)^{2}$

For larger clusters, we may also calculate the number of surface atoms, $\mathrm{N}_{\mathrm{s}}$, directly by dividing the surface area of the cluster by the cross section of an individual cluster atom, and then simplifying using the relationship in (eq. 3):
$N_{s}=\left(4 \pi\left(R_{\text {cluster }}\right)^{2}\right) /\left(\pi\left(R_{\text {atom }}\right)^{2}\right)=4 N^{2 / 3}$

From the TEM result we know that $\mathrm{R}_{\text {cluster }} \approx 6.5 \mathrm{~nm}$, and $\mathrm{R}_{\text {atom }}=0.137 \mathrm{~nm}$. The number of gold atoms per nanoparticle was estimated using (eq. 3):
$N=\left(R_{\text {cluster }} / R_{\text {atom }}\right)^{3}=\left(\left(6.5 \times 10^{-9}\right) /\left(137 \times 10^{-9}\right)\right)^{3}$
$N=106801$ gold atoms per nanoparticle

The number of surface atoms, $\mathrm{N}_{\mathrm{s}}$, on a single gold nanoparticle was also estimated using (eq. 5):
$N_{S}=4 N^{2 / 3}=4 \times(106,801)^{2 / 3}$
$\mathrm{N}_{\mathrm{s}}=\underline{9004}$ gold surface atoms per nanoparticle

From the calculation of $N$, the molecular weight $\left(\mathrm{M}_{\mathrm{w}}\right)$ of a single nanoparticle was calculated using the relative molecular mass of a single gold atom ( $\mathrm{M}_{\text {gold }}$ ):
$M_{w}=M_{\text {gold }} \times N$
$M_{w}=196.97 \times 106801$
$M_{w}=21036 \mathrm{kDa}$

Calculation of the amount of nanoparticles formed $\left(\mathrm{N}_{\mathrm{NP}}\right)$ when $1 \mathrm{dm}^{3}$ of 1 mM $\mathrm{HAuCl}_{4}$ is reduced by citrate was then calculated:

Moles of $\mathrm{HAuCl}_{4}=1 \times 1 \times 10^{-3}=1 \times 10^{-3} \mathrm{~mol}$

No. of gold atoms, $N_{\text {atom }}=1 \times 10^{-3} \times N_{A}=1 \times 10^{-3} \times 6.022 \times 10^{23}$

$$
=6.022 \times 10^{20}
$$

$\mathrm{N}_{\mathrm{NP}}=\mathrm{N}_{\text {atom }} / \mathrm{N}$
$N_{N P}=\left(6.022 \times 10^{20}\right) /(106801)$
$N_{N P}=5.639 \times 10^{15}$ Nanoparticles formed per $1 \times 10^{-3} \mathrm{~mol} \mathrm{HAuCl}_{4}$

Hence the final concentration of the gold colloid, $\mathrm{C}_{\mathrm{NP}}$, was estimated by dividing $\mathrm{N}_{\mathrm{NP}}$ by Avagadro's number ( $N_{A}$ ):
$\mathrm{C}_{\mathrm{NP}}=\mathrm{N}_{\mathrm{NP}} / N_{A}$
$C_{N P}=\left(5.639 \times 10^{15}\right) /\left(6.022 \times 10^{23}\right)$
$C_{N P}=9.363 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}$

## S2.0 Additional Spectra

Figure S2.1.: $300 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{H}_{3}{ }^{1}\left(d_{4}-\mathrm{MeOH}\right)$


Figure S2.2.: $75 \mathrm{MHz}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ PENDANT NMR spectrum of $\mathbf{H}_{\mathbf{3}} \mathbf{L}\left(d_{4}-\mathrm{MeOH}\right)$


Figure S2.3. : UV-vis absorption spectrum of 0.2 nM aqueous citrate-stabilised Au colloid (solid curve), and after addition of 125 nmol of $\mathbf{T b X}$ (dashed curve).
where $\operatorname{TbX}=$



Figure S2.4. : UV-vis absorption spectrum of 0.2 nM citrate stabilised gold colloid ( 2.5 ml ) (solid line with cross), after addition of $175 \mu \mathrm{l}$ methanol (solid line).


Figure S2.5. : UV-vis spectrum of nanoparticles functionalised with EuL after gel filtration chromatography on Sephadex G-15.


