Electronic Supplementary Information

Monitoring the formation of TTF dimers by Na⁺ complexation

Joël Lyskawa, Marc Sallé,* Jean-Yves Balandier, Franck Le Derf, Eric Levillain, Magali Allain, Pascal Viel, Serge Palacin

- 1- Materials and methods
- 2- Synthetic procedure
- 3- Na⁺ titration study (¹H-NMR)
- 4- Spectroelectrochemical study

1- Materials and methods

Unless otherwise noted, solvents and starting products were commercially available and used without further purification. ¹H-NMR titration studies were carried out by adding small volumes of concentrated solutions of the metal cation (as the perchlorate salt) dissolved in acetonitrile-d₃ to a solution of the calixarene receptor (1-3 mM) in CD₂Cl₂:CD₃CN (1:1).

2- Synthetic procedure

Compound 6. To a suspension of tert-butyl calix[4] arene 4 (0.120 mg, 0.121 mmol) in anhydrous CH₂Cl₂ (20 mL) were added successively under nitrogen, DCC (50 mg, 0.242 mmol), DMAP (29 mg, 0.242 mmol), HOBT (33 mg, 0.242 mmol) and finally hydroxymethyl-TTF 5 dissolved in 20 ml of dry CH₂Cl₂. The reaction mixture was stirred at room temperature during two days. The resulting suspension was filtered and after addition of CH₂Cl₂ (100 ml), the organic layer was washed with water and dried over MgSO4. After concentration under reduced pressure, the product was purified by recrystallisation (CH₂Cl₂/CH₃OH/C₅H₁₂), and an orange solid was isolated (70 mg, 41% yield). m.p. = 197-199°C; ¹H NMR (500 MHz): 7.10 (s, 4H, ArH), 6.76 (s, 2H, H_a), 6.60 (s, 8H, ArH + H_{b+c}), 5.25 (s, 4H, OC<u>H</u>₂COOCH₂TTF), 4.93 (s, 4H, OCH₂TTF), 4.90 (4H, 12.8 Hz, ArCH₂Ar), 4.60 (s, 4 H, OCH₂CONEt₂), 3.44 (m, 8H, OCH₂CH₃), 3.19 (d, 4H, 12.8, ArCH₂Ar), 1.27 (s, 18 H, tBu), 1.25 to 1.09 (m, 6H, NCH₂CH₃), 0.92 (s, 18 H, tBu); ¹³C NMR (125 MHz, acetone D₆): 171.28 (OCO), 168.19 (NCO), 154.72 and 154.29 (Ar ipso), 145.67 and 145.14 (Ar para), 135.74 and 133.20 (Ar ortho), 126.55 and 125.71 (Ar meta), 132.15, 120.34, 120.31, 119.89 (lateral C=C TTF), 111.83, 109.65 (central C=C TTF), 73.61 (OCH₂CONEt₂), 71.19 (OCH₂COOTTF), 61.12 (OCH₂TTF), 41.81 and 40.57 (NCH₂CH₃), 34.54, 34.25 (C(CH₃)₃), 32.74 (ArCH₂Ar), 31.95 and 31.61 (tBu), 14.85 and 13.65 (NCH₂CH₃); FT-IR (KBr, cm⁻¹): 1760 (OC=O), 1653 (NC=O); HRMS-ESI⁺ (M+ Na): Calcd 1445.426, found 1445.429.

3- Na⁺ titration study (¹H-NMR)

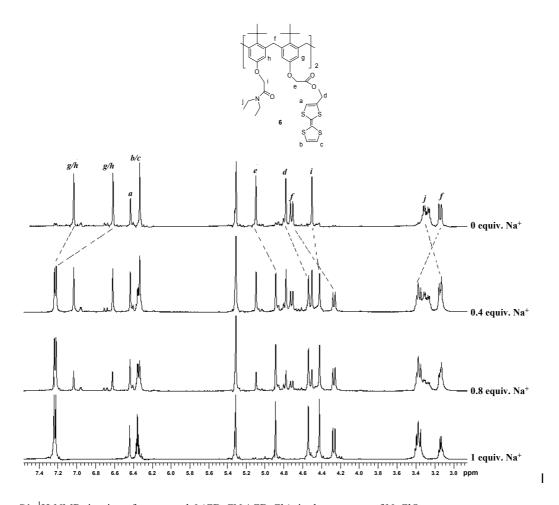



Figure S1. ¹H-NMR titration of compound 6 (CD₃CN / CD₂Cl₂), in the presence of NaClO₄.

4- Spectroelectrochemical study

Figure S2: Spectroelectrochemistry in thin layer (d \approx 50µm); conditions (Pt, \varnothing =2mm); [6] = 0.75 mM in CH₂Cl₂/CH₃CN (1/1), Bu₄NPF₆ (0.2 mol.L⁻¹), scan rate 0.125 mV s⁻¹.