Supplementary Information

Smart Amphiphiles: Hydro/Organogelators for In Situ Reduction of Gold

Praveen Kumar Vemula and George John*

Department of Chemistry, City College of the City University of New York, Convent Avenue at 138th Street, New York, NY 10031.

Scheme S1.

Experimental.

General Procedure for the synthesis of urea based amphiphiles, 1-3. *N*-carbamyl-*m*-aminophenol (0.456g, 3 mmol) was dissolved in 30 ml of dry methanol to that 1-alkylbromide (3.6 mmol) and K₂CO₃ (2.07 g, 15 mmol) was added, the resulting mixture was refluxed for 48 hrs. The reaction mixture was filtered to collect the intended product and separate it from the K₂CO₃. After evaporation of the solvent, upon addition of water white precipitate was formed, solid was filtered and washed with the water (3 × 25 mL) and CHCl₃ (3 × 25 mL). **1**, **2** and **3** were obtained as pure solids in 85, 70 and 79% yields respectively.

N-carbamyl-*m*-aminohexyloxybenzene, **1.** ¹H-NMR, (Acetone-d₆, 300MHz) δ 8.0 (*s*, 1H), 7.36 (*s*, 1H), 7.15 (*t*, 1H), 6.98 (*d*, 1H), 6.55 (*d*, 1H), 5.4 (*s*, 2H), 4.05 (*t*, 2H), 1.85 (*m*, 2H), 1.45 (*br s*, 2H), 1.35 (m, 4H), 0.95 (*m*, 3H). FT-IR, 3454 cm⁻¹, 2952 cm⁻¹, 1670 cm⁻¹. Anal. Calcd. for C₁₃H₂₀N₂O₂: C, 66.06; H, 8.52; N, 11.86. Found: C, 66.01; H, 8.56; N. 11.88.

N-carbamyl-*m*-aminodecyloxybenzene, **2.** ¹H-NMR, (Acetone-d₆, 300MHz) δ 8.05 (*s*, 1H), 7.34 (*s*, 1H), 7.15 (*t*, 1H), 6.98 (*d*, 1H), 6.5 (*d*, 1H), 5.4 (*s*, 2H), 4.0 (*t*, 2H), 1.85 (*m*, 2H), 1.45 (*br s*, 2H), 1.35 (m, 12H), 0.95 (*m*, 3H). FT-IR, 3454 cm⁻¹, 2952 cm⁻¹, 1670 cm⁻¹. Anal. Calcd. for C₁₇H₂₈N₂O₂: C, 69.81; H, 9.64; N, 9.58. Found: C, 69.78; H, 9.66; N. 9.57.

N-carbamyl-*m*-aminotetradecyloxybenezene, **3.** ¹H-NMR, (Acetone-d₆, 300MHz) δ 8.05 (*s*, 1H), 7.38 (*s*, 1H), 7.15 (*t*, 1H), 6.98 (*d*, 1H), 6.55 (*d*, 1H), 5.45 (*s*, 2H), 3.98 (*t*, 2H), 1.85 (*m*, 2H), 1.45 (*br s*, 2H), 1.35 (m, 20H), 0.95 (*m*, 3H). FT-IR, 3454 cm⁻¹, 2952 cm⁻¹, 1670 cm⁻¹. Anal. Calcd. for C₂₁H₃₆N₂O₂: C, 72.37; H, 10.4; N, 8.03. Found: C, 72.35; H, 10.37; N. 8.09.

Typical hydrogel and gold nanoparticle preparation. HAuCl₄ stock solution was made in acetone and water separately. Required amount (1-10 mg) of gelator was weighed and taken in 2 mL screw capped vial, to that appropriate amount of solvent (1-2 mL) and HAuCl₄ solution were added and closed tightly. The vial was heated to 40-50 °C with shaking until the solid was completely dissolved. The solution was set aside and allowed to cool to room temperature. Within 2 to 30 mins GNPs embedded pink coloured gels were formed. Gelation was considered to be occurred when we observed no gravitational flow in inverted tube.

solvent	3	2	1
water	$G(0.1)^{b}[92]^{c}$	G (0.4) [84]	G (0.4) [70]
cyclohexane	G (0.2) [78]	G (0.5) [75]	G (0.6) [81]
benzene	G (0.5) [68]	G (1.0) [62]	G (1.0) [60]
toluene	G (0.5)[68]	G (1.0) [60]	G (1.0) [64]
CCl ₄	G (0.4) [75]	G (1.2) [66]	G (1.25) [68]
CHCl ₃	G (0.6) [57]	G (1.5) [49]	Sol
CH ₃ CN	G (0.4) [73]	G (1.0) [67]	Sol
acetone	G (0.6) [73]	Sol	Sol
1,4-dioxane	G (1.0)[78]	Sol	Sol
methonol	G (1.0)[70]	Sol	Sol
DMF	Sol	Sol	Sol
DMSO	Sol	Sol	Sol

Table S1. The gelation ability of 1-3 in water and various organic solvents.^a

^aG = stable gel at room temperature. ^bMinimum gelation concentrations showed in (). ^cGel melting temperatures, T_{gel} showed in []. Sol = soluble.

Compound	acetone solution	solid from	xerogel
2	1667	1649	1641
3	1659	1636	1630

Table S2. FT-IR absorbance bands of urea carbonyl group in various states of 2 and 3.^a

^aXerogels were prepared by freeze drying of D₂O gels.

(Explanation: The observed carbonyl stretching values of xerogel and solid phase are lower than solution phase which suggesting that these amphiphiles are indeed participating in extensive hydrogen bonding in solid state as well as gel state.)

Figure S1. SEM image of xerogels prepared from gels of a) 2 in CH₃CN, b) 2 in water.

Figure S2. TEM image of a) 1 capped gold nanoparticles in acetone solution. b, c) acetone gel of 3 with gold nanoparticles. SEM image of xerogels prepared from gel of d) 2 in water with gold nanoparticles.

Figure S3. TEM image of a) acetone gel of 3, b) hydrogel of 2 without gold nanoparticles.

Figure S4. XRD diagrams of the hydrogels of **1** with and without gold nanoparticles (arrow shows peak corresponding to typical gold (111) plane).

Figure S5. Schematic illustration for self-assembly of urea amphiphiles in hydrogels and arrangement for gold nanoparticles around hydrogel fibers.