Contra-Friedel-Crafts tert-butylation of substituted aromatic rings via directed metallation and sulfinylation

Jonathan Clayden, ${ }^{* a}$ Christopher C. Stimson ${ }^{a b}$ and Martine Keenan ${ }^{b}$
${ }^{a}$ School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK; clayden@man.ac.uk
${ }^{b}$ Eli Lilly and Co. Ltd., Erl Wood Manor, Windlesham, Surrey GU20 6PH, UK

ELECTRONIC SUPPLEMENTARY INFORMATION

Details of spectrometers etc. have been provided before. "Flash Chromatography" refers to chromatography performed on silica by the method of Still et al. ${ }^{2}$

Method A General ortholithiation procedure using s-BuLi. -sec-BuLi (1.3 equiv, 1.3 mmol of a 1.3 M solution in hexane) was added dropwise to the amide (1 equiv, 1.0 mmol) stirring in dry THF (20 ml) under nitrogen at $-78^{\circ} \mathrm{C}$. After 30-60 mins, the electrophile (2 equiv, 2.0 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$ and the mixture left to warm to room temperature and quenched with saturated ammonium chloride solution. The THF was removed under reduced pressure and the mixture diluted with dichloromethane (50 ml), washed with saturated ammonium chloride solution ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure.

Method B General procedure for substitution of tert-butyl sulfoxides. -tert-BuLi (5 equiv, 5.0 mmol of a 1.5 M solution in pentane) was added dropwise to the tert-butyl sulfoxide (1 equiv, 1.0 mmol) at $-78{ }^{\circ} \mathrm{C}$. After 20-90 minutes, saturated ammonium chloride solution was added to quench and the mixture allowed to warm to room temperature. The mixture diluted with diethyl ether (30 ml), washed with saturated ammonium chloride solution ($3 \times 20 \mathrm{ml}$), dried (MgSO_{4}) and concentrated under reduced pressure.
tert-Butyl tert-butylthiosulfinate. ${ }^{3}$ - By the method of Ellman, tert-Butyl disulfide ($20 \mathrm{ml}, 0.105$ mol) was stirred in acetone (46 ml) and the chiral salen ligand ${ }^{3}(200 \mathrm{mg}, 0.55 \mathrm{mmol})$ and vanadyl acetylacetonate ($140 \mathrm{mg}, 0.55 \mathrm{mmol}$) were added. Hydrogen peroxide (14.4 ml of a 27.5% wt. soln in water) was added over eight hours at $0^{\circ} \mathrm{C}$, the mixture turning from green to black. After 18 hours the solution was diluted with ether (30 ml) and washed with saturated ammonium chloride solution ($3 \times 15 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and solvents evaporated under reduced
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
pressure giving a yellow liquid. Hexane (20 ml) was added and the solution was left to crystallise for three hours at $4^{\circ} \mathrm{C}$. The mother liquor was filtered, concentrated under reduced pressure and rediluted in hexane (15 ml) and left to recrystallise. The process was repeated three time giving the thiosulfinate ($12.7 \mathrm{~g}, 68 \%$) as white prisms, m.p. $<2{ }^{\circ} \mathrm{C}, 94 \%$ ee by HPLC $\left((R, R)\right.$-Whelk 01), $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.46 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$.

Starting materials 1 and 4 were obtained from commercial sources or made by standard methods:

4,5-Dihydro-4,4-dimethyl-2-phenyloxazole 1a. ${ }^{4}$-2-Methyl-2-amino-1-propanol (14.6 ml , $0.152 \mathrm{~mol})$ was added to benzoyl chloride $(8.0 \mathrm{ml}, 69.0 \mathrm{mmol})$ in dichloromethane $(125 \mathrm{ml})$ at 0 ${ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 18 hours. The mixture was filtered, the cake washed with dichloromethane $(30 \mathrm{ml})$ and cooled to $0^{\circ} \mathrm{C}$. Thionyl chloride $(15.1 \mathrm{ml}, 0.207$ mol) was added and the mixture heated to reflux and then cooled to room temperature and stirred for 3 hours. Water and $40 \% \mathrm{aq}$. NaOH were added slowly until the solution reached pH 11 and the organic layer was separated, washed with saturated ammonium chloride solution ($2 \times 50 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The resulting oil was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the oxazoline 1a as a yellow oil ($12.2 \mathrm{~g}, 100$ \%); $\mathrm{R}_{\mathrm{f}}\left(80: 20\right.$ Petrol:EtOAc) $0.45 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.21\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.94\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, 7.21 (2H, t, $J 8, \mathrm{ArH}$), 7.38 ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$), 7.76 ($2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$).

N,N-Diethylbenzamide 1b. ${ }^{5}$-Benzoyl chloride ($5 \mathrm{ml}, 43 \mathrm{mmol}$) was added dropwise to a solution of diethylamine $(13.2 \mathrm{ml}, 128 \mathrm{mmol})$ in dichloromethane $(75 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was raised to room temperature and left to stir for 18 hours. The mixture was washed with 1 M aq. $\mathrm{HCl}(30 \mathrm{ml})$ then saturated ammonium chloride solution ($2 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure giving the amide $\mathbf{1 b}$ as a brown oil ($7.0 \mathrm{~g}, 92 \%$); R_{f} (70:30 Petrol:EtOAc) $0.39 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89\left(3 \mathrm{H}, \mathrm{m}(b r o a d), \mathrm{CH}_{3}\right), 1.04$ ($3 \mathrm{H}, \mathrm{m}$ (broad), CH_{3}), 3.04 ($2 \mathrm{H}, \mathrm{s}$ (broad), NCH_{2}), 3.33 ($2 \mathrm{H}, \mathrm{s}$ (broad), NCH_{2}), 7.12-7.21 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
N, N-Diisopropylbenzamide $\mathbf{1 c} .{ }^{6}$-Benzoyl chloride ($5.0 \mathrm{ml}, 43 \mathrm{mmol}$) was added dropwise to a solution of diisopropylamine ($19.0 \mathrm{ml}, 128 \mathrm{mmol}$) in dichloromethane $(75 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. The
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
mixture was raised to room temperature and left to stir for 18 hours. The mixture was washed with $1 \mathrm{M} \mathrm{aq} .\mathrm{HCl}(30 \mathrm{ml})$ then saturated ammonium chloride solution (2 x 20 ml), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure giving the amide $\mathbf{1 c}(9.0 \mathrm{~g}, 100 \%)$ as white crystals, m.p. $72-74{ }^{\circ} \mathrm{C}\left(\mathrm{Lit},{ }^{7} 69-72{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.50 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.03(3 \mathrm{H}, \mathrm{m}$ (broad), $\left.\mathrm{CH}_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{m}\right.$ (broad), $\left.\mathrm{CH}_{3}\right), 3.41(1 \mathrm{H}, \mathrm{m}$ (broad), NCH$), 3.72(1 \mathrm{H}, \mathrm{m}$ (broad), $\mathrm{NCH}), ~ 7.16-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.23-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
N-tert-Butyl-N-methylbenzamide 1d. ${ }^{8}$ - N-Methyl-tert-butylamine ($5.2 \mathrm{ml}, 43.2 \mathrm{mmol}$) was added dropwise to a stirred solution of benzoyl chloride ($5.0 \mathrm{ml}, 43.2 \mathrm{mmol}$) and triethylamine $(11.9 \mathrm{ml}, 86.4 \mathrm{mmol})$ in anhydrous dichloromethane (125 ml) under nitrogen at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 18 hours before washing with $1 \mathrm{M} \mathrm{aq} . \mathrm{HCl}(2 \times 50$ $\mathrm{ml})$ and saturated ammonium chloride (50 ml) and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were evaporated under reduced pressure and the residue was recrystallised (heptane) to give the amide 1d ($6.96 \mathrm{~g}, 86 \%$ yield) as white plates, m.p. $79-80{ }^{\circ} \mathrm{C}\left(\mathrm{Lit},{ }^{8} 80-81{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) $0.77 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.52\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.88(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.35-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

N-Isopropylbenzamide 1f. ${ }^{9}$-Benzoyl chloride ($5 \mathrm{ml}, 43 \mathrm{mmol}$) was slowly added to a solution of isopropylamine $(11.0 \mathrm{ml}, 130 \mathrm{mmol})$ in dichloromethane $(100 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 hours the mixture washed with saturated ammonium chloride solution ($3 \times 30 \mathrm{ml}$) and solvent removed under reduced pressure. The residue was recrystallised (Heptane/EtOAc) to give the amide $\mathbf{1 f}(6.8 \mathrm{~g}, 95 \%)$ as white crystals, m.p. $100-102{ }^{\circ} \mathrm{C}\left(\mathrm{Lit},{ }^{9} 104-10{ }^{\circ} \mathrm{C}\right)$; $\mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc})$ $0.50 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.13\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 4.15(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 5.85(1 \mathrm{H}, \mathrm{s}$ (broad), NH), 7.26-7.29 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.32 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.60-7.62 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

N,N-Diisopropyl-2-methoxybenzamide $\mathbf{4 a} .{ }^{6}$-Diisopropylamine ($11.3 \mathrm{ml}, 80 \mathrm{mmol}$) was added dropwise to a stirred solution of 1 -anisoyl chloride ($3 \mathrm{ml}, 20 \mathrm{mmol}$) in anhydrous dichloromethane (85 ml) under nitrogen at $0^{\circ} \mathrm{C}$. After several hours the colourless mixture was washed with 1% aq. $\mathrm{HCl}(3 \times 50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and solvents evaporated under reduced pressure and the residue was recrystallised (Heptane/EtOAc) to give the amide $\mathbf{4 a}(5.59 \mathrm{~g}, 98 \%)$ as white crystals, m.p. $87-89^{\circ} \mathrm{C}\left(\right.$ Lit. $\left.^{6}{ }^{6} 89-90{ }^{\circ} \mathrm{C}\right)$; $\mathrm{R}_{\mathrm{f}}\left(80: 20\right.$ Petrol:EtOAc) $0.56 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.58\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.59(3 \mathrm{H}, \mathrm{d}, J 7$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
CH_{3}), 3.52 (1 H , sept, $J 7, \mathrm{CH}$), 3.71 (1 H , sept, $J 7, \mathrm{CH}$), $3.85(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.91(1 \mathrm{H}, \mathrm{d}, J 8$, ArH), $6.99(1 \mathrm{H}, \mathrm{tt}, J 8$ and 1, ArH), $7.18(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.33(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.
N, N-Diisopropyl-3-methoxybenzamide 4b. ${ }^{10}$-Diisopropylamine ($3.4 \mathrm{ml}, 24.2 \mathrm{mmol}$) was added dropwise to a stirred solution of 3-methoxy benzoylchloride ($3.0 \mathrm{ml}, 21.9 \mathrm{mmol}$) and triethylamine ($9.2 \mathrm{ml}, 69.8 \mathrm{mmol}$) in anhydrous dichloromethane (50 ml) under nitrogen at $0^{\circ} \mathrm{C}$. The mixture was heated to $50^{\circ} \mathrm{C}$ for 18 hours before cooling, washing with $1 \mathrm{M} \mathrm{aq} .\mathrm{HCl}(2 \times 30$ $\mathrm{ml})$ and saturated ammonium chloride (30 ml) and drying $\left(\mathrm{MgSO}_{4}\right)$. The solvents were evaporated under reduced pressure to give a residue which was recrystallised (heptane) to give the amide 4b (4.2 g, 81\%) as white crystals; $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.64 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.00-1-40\left(6 \mathrm{H}, \mathrm{m}\right.$ (broad), $\left.\mathrm{CH}_{3}\right), 1.40-1-70\left(6 \mathrm{H}, \mathrm{m}(\right.$ broad $\left.), \mathrm{CH}_{3}\right), 3.60(1 \mathrm{H}, \mathrm{m}$ (broad), NCH), 3.79 ($1 \mathrm{H}, \mathrm{m}$ (broad), NCH), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.82-6.95 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.33 ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$).

N,N-Diisopropyl-4-methoxybenzamide $\mathbf{4 c} .{ }^{6}$-Diisopropylamine ($3.0 \mathrm{ml}, 23.8 \mathrm{mmol}$) was added dropwise to a stirred solution of 4-methoxy benzoylchloride ($3.0 \mathrm{ml}, 21.7 \mathrm{mmol}$) and triethylamine ($9.2 \mathrm{ml}, 69.8 \mathrm{mmol}$) in anhydrous dichloromethane (50 ml) under nitrogen at $0^{\circ} \mathrm{C}$. The mixture was heated to $50^{\circ} \mathrm{C}$ for 18 hours before cooling, washing with $1 \mathrm{M} \mathrm{aq} .\mathrm{HCl}(2 \times 30$ $\mathrm{ml})$ and saturated ammonium chloride (30 ml). The solvents were evaporated under reduced pressure to give a residue which was purified by flash chromatography (SiO_{2}; Petrol:EtOAc 80:20) to give the amide $\mathbf{4 c}(5.13 \mathrm{~g}, 100 \%)$ as a colourless oil; $\mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.55 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 1.20-1.50 (12H, m (broad), CH_{3}), 3.60-3.90 ($2 \mathrm{H}, \mathrm{m}$ (broad), NCH), 3.85 (3H, s, OMe), $6.95(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.35(2 \mathrm{H}, \mathrm{d}, ~ J 8, \mathrm{ArH})$.

Naphthalene-1-carboxylic acid diisopropylamide 4d. ${ }^{11}$-Diisopropylamine ($11.2 \mathrm{ml}, 80 \mathrm{mmol}$) was added dropwise to a stirred solution of naphthoyl chloride ($3 \mathrm{ml}, 20 \mathrm{mmol}$) in anhydrous dichloromethane (85 ml) under nitrogen at $0^{\circ} \mathrm{C}$. After several hours the mixture was washed with 1% aq. $\mathrm{HCl}(3 \times 50 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure and the residue was recrystallised (Heptane/EtOAc) to give the amide $4 \mathbf{d}$ ($5.65 \mathrm{~g}, 97 \%$) as white crystals, m.p. $=175-178{ }^{\circ} \mathrm{C}$ (Lit., $\left.{ }^{11}{ }^{181-182}{ }^{\circ} \mathrm{C}\right) ; \mathrm{R}_{\mathrm{f}}\left(80: 20\right.$ Petrol:EtOAc) $0.72 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.07\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.70\left(3 \mathrm{H}, \mathrm{d}, J 8, \mathrm{CH}_{3}\right), 1.77(3 \mathrm{H}, \mathrm{d}, J 7$, CH_{3}), $3.61(1 \mathrm{H}$, sept, $J 7, \mathrm{CH}), 3.66(1 \mathrm{H}$, sept, $J 7, \mathrm{CH}), 7.36(1 \mathrm{H}, \mathrm{dd}, J 6$ and $1, \mathrm{ArH}), 7.51(3 \mathrm{H}$, m, ArH), 7.90 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
N,N-Diisopropyl-2,5-dimethoxybenzamide 4e. -2,5-Dimethoxybenzoic acid (3.14 g, 17.3 mmol) was dissolved in thionyl chloride (20 ml) and stirred for 60 mins at $90^{\circ} \mathrm{C}$. The mixture was cooled and excess reagent was removed under reduced pressure. The resulting white crystals were dissolved in dichloromethane (25 ml) and was slowly added to a solution of diisopropylamine ($7.3 \mathrm{ml}, 51.8 \mathrm{mmol}$) in dichloromethane (50 ml) at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 hours the mixture was diluted with dichloromethane (25 ml), washed with saturated ammonium chloride solution ($3 \times 30 \mathrm{ml}$) and solvent removed under reduced pressure. The residue was purified by flash chromoatography $\left(\mathrm{SiO}_{2} ; 60: 40\right.$ Petrol:EtOAc) to give the amide $4 \mathrm{e}(3.65 \mathrm{~g}$, 80%) as white crystals, m.p. $92-95^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.33 ; v_{\max } / \mathrm{cm}^{-1} 2962$ and 2931 (C-H), $1634(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.40(3 \mathrm{H}, \mathrm{d}, J$ $7, \mathrm{CH}_{3}$), $1.42\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.32(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.51(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.63(6 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 6.58(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.67(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.7,20.8,21.2,21.2$, 46.1, 51.3, 56.2, 56.5, 112.6, 112.9, 114.8, 129.7, 149.6, 154.2, 168.5; m/z (CI) 266 (100\%, $\mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 266.1748\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{3}\right.$ requires (M) 266.1751).

2-(Di-tert-butylphosphino)-N,N-diethylbenzamide $\mathbf{4 f} .^{12}$-By method A, amide $\mathbf{1 b}(1.07 \mathrm{~g}, 6.0$ $\mathrm{mmol})$ and di(tert-butyl)phosphine chloride ($1.26 \mathrm{ml}, 6.6 \mathrm{mmol}$) gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc $\left.70: 30\right)$ to give the phosphine (1.15 g , 60%) as yellow crystals, m.p. $58-60{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.50 ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2970 \& 2864$ (C-H), $1634(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.19\left(9 \mathrm{H}, \mathrm{d}, J 12,{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.23(9 \mathrm{H}, \mathrm{d}, J$ $\left.12,{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.29\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 3.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.17\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right)$, $3.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.23(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.33-7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.82(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 12.9, 14.4, 30.7 (3C, d, $J 18, \mathrm{PCCH}_{3}$), 31.7 ($3 \mathrm{C}, \mathrm{d}, J 18, \mathrm{PCHCH}_{3}$), 32.7 ($1 \mathrm{C}, \mathrm{d}, J$ 24, PC), 33.3 (1C, d, $J 24, ~ P \underline{C}$), 38.7, 43.4, 126.4, 126.4, 127.3, 129.3, 135.6, 146.9, 147.2; m/z (CI) $322(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 322.2291\left(\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NOP}\right.$ requires (M) 322.2294).

2-(Dimethylamino)-N,N-diethylbenzamide 4g. ${ }^{13}$-2-(Diimethylamino)benzoic acid ($3.89 \mathrm{~g}, 23.0$ mmol) was dissolved in thionyl chloride (20 ml) and stirred for 30 mins . Excess reagent was removed under reduced pressure. The resulting yellow oil was dissolved in dichloromethane (25 $\mathrm{ml})$ and was slowly added to a solution of diethylamine $(7.1 \mathrm{ml}, 69 \mathrm{mmol})$ in dichloromethane $(100 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 3 hours the mixture was diluted with dichloromethane (25
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
ml), washed with saturated ammonium chloride solution ($3 \times 30 \mathrm{ml}$) and solvent removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2} ; 80: 20\right.$ Petrol:EtOAc) to give the amide ($3.33 \mathrm{~g}, 65 \%$) as an orange oil, $\mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.52 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.04\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 2.82\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.09(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2}\right), 3.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.36\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 6.93(1 \mathrm{H}, \mathrm{d}, J 8$, ArH), $6.95(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.20(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.30(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH})$.

2-(2-(tert-Butylsulfinyl)phenyl)-4,5-dihydro-4,4-dimethyloxazole 2a. -By method A, oxazole 1a ($270 \mathrm{mg}, 1.54 \mathrm{mmol}$) and t-butyl t-butylthiosulfinate ${ }^{3}(270 \mathrm{mg}, 1.85 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{Petrol}: \mathrm{EtOAc} 20: 80\right)$ to give the sulfoxide 2a $(238 \mathrm{~g}, 56 \%)$ as white crystals, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.46 ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 2975(\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.31\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.44$ $(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{t}, J 8, \operatorname{ArH}), 7.91(1 \mathrm{H}, \mathrm{d}, J 8, \operatorname{ArH}), 8.02(1 \mathrm{H}, \mathrm{d}, J 8, \operatorname{ArH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 23.9, 28.6, 28.8, 58.9, 68.3, 79.5, 126.8, 128.0, 130.4, 130.7, 131.1, 142.3, 161.0; $m / z(\mathrm{CI}) 280(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 280.1364\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NSO}_{2}\right.$ requires (M) 280.1371).

2-(tert-Butylsulfinyl)-N,N-diisopropylbenzamide 2b. -By method A, amide 1b (1.0 g, 5.62 mmol) and t-butyl t-butylthiosulfinate ${ }^{3}$ ($984 \mathrm{mg}, 6.74 \mathrm{mmol}$,) gave a residue which was purified by flash chromatography (SiO_{2}; Petrol:EtOAc $30: 70$) to give the sulfoxide $\mathbf{2 b}(1.0 \mathrm{~g}, 63 \%)$ as a pale yellow oil, $\mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.10 ; v_{\max } / \mathrm{cm}^{-1} 2976,2934(\mathrm{C}-\mathrm{H}), 1632(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.03\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.23\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.26\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 3.17-3.20(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2}\right), 3.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.34(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.54-7.59(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.93$ ($1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 12.9, 14.3, 23.7, 39.5, 43.5, 48.1, 126.9, 127.3, 129.5, 132.1, 137.8, 139.0, 168.0; m/z (CI) 282 ($80 \%, \mathrm{M}+\mathrm{H}$), 209 (100%); Acc. mass found $(\mathrm{M}+\mathrm{H}) 282.1518\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NSO}_{2}\right.$ requires (M) 282.1522).

2-(tert-Butylsulfinyl)-N,N-diisopropylbenzamide 2c. -By method A, amide 1c ($527 \mathrm{mg}, 2.56$ $\mathrm{mmol})$ and t-butyl t-butylthiosulfinate ${ }^{3}(411 \mathrm{mg}, 2.82 \mathrm{mmol})$ gave a residue which was purified by flash chromatography (SiO_{2}; Petrol:EtOAc $30: 70$) to give the sulfoxide $\mathbf{2 c}(341 \mathrm{mg}, 43 \%)$ as white crystals, m.p. $80-81{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.16 ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 2969(\mathrm{C}-\mathrm{H}), 1635(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.91\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.26-1.27\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.55\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right)$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
$1.57\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.52-3.61(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 7.25(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.52-7.62(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.95(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.3,20.8,21.0,21.2,23.8,46.4,51.5,58.1,126.3$, 127.0, 129.0, 132.3, 138.2, 139.5, 167.8; m/z (CI) 310 (20%, $\mathrm{M}+\mathrm{H}$), 238 (40%), 206 (100%); Acc. mass found $(\mathrm{M}+\mathrm{H}) 310.1838\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NSO}_{2}\right.$ requires (M) 310.1835).

N-tert-Butyl-2-(tert-butylsulfinyl)-N-methylbenzamide 2d. -By method A, 1d (1.09 g, 5.7 mmol) and t-butyl t-butylthiosulfinate ${ }^{3}(1.44 \mathrm{~g}, 7.4 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 20:80) to give the sulfoxide 2d ($1.49 \mathrm{~g}, 89 \%$) as a colourless oil, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.45 ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 2963$, $2926(\mathrm{C}-\mathrm{H}), 1634(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.22\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.55\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.82(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.35(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56-7.60(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.95(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.5,28.2,34.6,57.6,58.1,126.6,127.3,129.1$, 132.2, 137.3, 140.0, 169.3; m/z (CI) 296 (30\%, M+H), 222 (40\%), 209 (100%); Acc. mass found $(\mathrm{M}+\mathrm{H}) 296.1685\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires (M) 296.1679).

2-(tert-Butylsulfinyl)-N-isopropylbenzamide 2f. -By method A, amide $\mathbf{1 f}$ ($287 \mathrm{mg}, 1.76 \mathrm{mmol}$) and t-butyl t-butylthiosulfinate ${ }^{3}(309 \mathrm{mg}, 2.12 \mathrm{mmol})$ gave a residue which was purified by flash chromatography ($\mathrm{SiO}_{2} ; \mathrm{EtOAc}$) to give the sulfoxide $\mathbf{2 f}\left(326 \mathrm{mg}, 69 \%\right.$) as a colourless oil, R_{f} (EtOAc) $0.41 ; v_{\max } / \mathrm{cm}^{-1} 2973(\mathrm{C}-\mathrm{H}), 1643(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.01\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.16$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.19\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 4.11(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 7.25(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.33$ ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$), $7.41(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.51(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.66(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{NH}) ; \delta_{\mathrm{C}}(125$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 22.7, $22.9,23.4,42.4,57.8,126.0,128.7,130.0,131.0,137.4,138.4,166.4 ; \mathrm{m} / \mathrm{z}$ (CI) $268(80 \%, \mathrm{M}+\mathrm{H}), 211(50 \%), 194(100 \%)$; Acc. mass found (M+H) $268.1364\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NSO}_{2}\right.$ requires (M) 268.1366).

1-(tert-Butylsulfinyl)-2-methoxybenzene $\mathbf{2 g}$. -By method A, freshly distilled anisole (0.15 ml , $1.37 \mathrm{mmol})$ and t-butyl t-butylthiosulfinate ${ }^{3}(240 \mathrm{mg}, 1.64 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2} ;\right.$ Petrol:EtOAc $\left.60: 40\right)$ to give the sulfoxide (116 mg , 40%) as a colourless liquid, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.66 ; v_{\max } / \mathrm{cm}^{-1} 2976,2900(\mathrm{C}-\mathrm{H}), 1586(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.17\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.87(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.11(1 \mathrm{H}, \mathrm{t}, J 8$, ArH), $7.40(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.72(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 21.5,55.8,57.8$, 111.1, 121.3, 127.7, 128.9, 132.6, 132.6, 157.5; m/z (CI) 213 (100%, M+H); Acc. mass found $(\mathrm{M}+\mathrm{H}) 212.0867\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{SO}_{2}\right.$ requires (M) 212.0866).
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
2-(tert-Butylsulfinyl)-N,N-dimethylbenzenamine $\mathbf{2 h}$. $-n$-BuLi (2.06 ml of a 2.5 M solution in hexane) and TMEDA ($0.42 \mathrm{ml}, 2.9 \mathrm{mmol}$) were stirred in dry hexane (15 ml) under nitrogen at room temperature before freshly distilled N, N,dimethylaniline ($0.15 \mathrm{ml}, 1.37 \mathrm{mmol}$) was added dropwise. The mixture was heated at reflux for 4 hours before being cooled to $-78^{\circ} \mathrm{C}$ and $t-$ butyl t-butylthiosulfinate ${ }^{3}$ (240 mg in 2 ml dry THF, 1.64 mmol) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture left to warm to room temperature and quenched with saturated ammonium chloride solution. The THF was removed under reduced pressure and the mixture diluted with dichloromethane (50 ml), washed with saturated ammonium chloride solution ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2} ;\right.$ Petrol:EtOAc 20:80) to give the sulfoxide $\mathbf{2 g}(179 \mathrm{mg}, 32 \%)$ as yellow prisms, $\mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.65 ; \mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2977,2790(\mathrm{C}-\mathrm{H}), 1054(\mathrm{~S}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.99$ $\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.55\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 6.93(1 \mathrm{H}, \mathrm{dd}, J 1,8, \mathrm{ArH}), 7.04(1 \mathrm{H}, \mathrm{td}, J 1,8, \mathrm{ArH}), 7.23(1 \mathrm{H}$, td, $J 1,8, \mathrm{ArH}), 7.60(1 \mathrm{H}, \mathrm{dd}, J 1,8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.4,44.9,57.9,119.9,123.9$, 127.3, 132.2, 134.9, 153.6; m/z (CI) 226 ($100 \%, \mathrm{M}+\mathrm{H}$); Acc. mass found (M+H) 226.1261 $\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NSO}\right.$ requires (M) 226.1260).

2-(2-tert-Butylphenyl)-4,5-dihydro-4,4-dimethyloxazole 3a. -Method B was used with amide 2a ($169 \mathrm{mg}, 0.60 \mathrm{mmol}$) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc $80: 20$) to give the 2 -tert-butyl oxazoline $\mathbf{3 a}$ ($111 \mathrm{mg}, 73 \%$) as white crystals, R_{f} (EtOAc) $0.46 ; v_{\max } / \mathrm{cm}^{-1} 2975(\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.12\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.31$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 4.05\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 7.44(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.59(1 \mathrm{H}, \mathrm{t}, J 8$, $\mathrm{ArH}), 7.91(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 8.02(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 23.9,28.6,28.8$, $58.9,68.3,79.5,126.8,128.0,130.4,130.7,131.1,142.3,161.0 ; \mathrm{m} / \mathrm{z}$ (CI) $280(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 280.1364\left(\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NSO}_{2}\right.$ requires (M) 280.1371).

2-tert-Butyl-N,N-diethylbenzamide 3b. -Method B was used with sulfoxide 2b ($107 \mathrm{mg}, 0.32$ mmol) to give a residue that was purified by flash chromatography (SiO_{2}; Petrol:EtOAc 80:20) to give the ortho-tert-butyl amide $\mathbf{3 b}(128 \mathrm{mg}, 100 \%)$ as a colourless oil; $\mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.33$; $v_{\max } / \mathrm{cm}^{-1} 2967(\mathrm{C}-\mathrm{H}), 1632(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.99\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.17(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.31\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.96\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.71$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 6.97(1 \mathrm{H}, \mathrm{dd}, J 8$ and $2, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{td}, J 8$ and $1, \mathrm{ArH}), 7.22(1 \mathrm{H}, \mathrm{td}, J 8$
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
and 2, ArH$), 7.40(1 \mathrm{H}, \mathrm{dd}, J 8$ and 1, ArH$) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.3,13.6,31.9,36.8,38.8$, 43.6, 126.0, 127.7, 127.9, 128.9, 136.1, 146.8, 173.4; m / z (CI) 233 (100%, M+H); Acc. mass found $(\mathrm{M}+\mathrm{H}) 234.1847\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}\right.$ requires (M) 234.1852).

2-tert-Butyl-N,N-diisopropylbenzamide 3c. -Method B was used with sulfoxide 2c (100 mg , $0.32 \mathrm{mmol})$ to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the ortho-tert-butyl amide $\mathbf{3 c}\left(35 \mathrm{mg}, 73 \%\right.$) as white crystals, m.p. $86-87^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}$ (70:30 EtOAc) 0.68; $v_{\text {max }} / \mathrm{cm}^{-1} 2966(\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.02(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.35\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.45-1.50\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 3.39(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH})$, $3.57(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 6.93(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.09(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.19(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.40$ $(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.1,20.1,20.7,20.7,32.1,36.8,45.9,51.1,125.8$, 127.4, 128.1, 128.6, 137.3, 146.9, 173.0; m/z (CI) $262(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found (M+H) $262.2167\left(\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}\right.$ requires $\left.(M) 262.2165\right)$.

N,2-Di-tert-butyl-N-methylbenzamide 3d. -Method B was used with amide 2d ($383 \mathrm{mg}, 1.55$ $\mathrm{mmol})$ to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the ortho-tert-butyl amide 3d ($251 \mathrm{mg}, 82 \%$ yield) as a colourless oil; $\mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.79; $\nu_{\max } / \mathrm{cm}^{-1} 2959,2869(\mathrm{C}-\mathrm{H}), 1651(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42(9 \mathrm{H}$, $\left.\mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.57\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.75(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 7.00(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.17(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.27$ ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$), 7.45 ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$); $\delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 27.4, 27.9, 31.7, 35.5, 36.5, 126.1, 127.4, 127.8, 128.4, 138.4, 146.2, 174.6; $m / z(\mathrm{CI}) 265\left(30 \%, \mathrm{M}^{2} \mathrm{NH}_{4}{ }^{+}\right)$, $248(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 248.2012\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}\right.$ requires (M) 248.2009).

2-tert-Butyl-N-methylbenzamide 3e. -The amide 3d ($178 \mathrm{mg}, 0.89 \mathrm{mmol}$) was dissolved in 3 M HCl in dioxane $(10 \mathrm{ml})$ and stirred at reflux for 18 hours. The mixture was then diluted with diethylether (30 ml) and washed with saturated ammonium chloride solution ($3 \times 20 \mathrm{ml}$). The residue was then purified via flash chromatography (70:30 Petrol:EtOAC) to give the amide $\mathbf{3 e}$ ($121 \mathrm{mg}, 95 \%$ yield) as white crystals, m.p. $136-138{ }^{\circ} \mathrm{C}$; $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3282$ (N-H), 2959 (C-H), $1634(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.42\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 3.00(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{NMe}), 5.70(1 \mathrm{H}, \mathrm{s}$ (broad), NH), $7.20-7.23(2 H, m, A r H), 7.49(1 H, d, J 8, \operatorname{ArH}), 7.50(1 H, d, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 26.9, 31.7, 36.4, 125.8, 127.3, 128.5, 129.4, 137.0, 147.6, 173.9; m/z(CI) 209
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
$\left(100 \%, \mathrm{M}+\mathrm{NH}_{4}{ }^{+}\right), 192(50 \%)$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 192.1384\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}\right.$ requires (M) 192.1383).

2-tert-Butylanisole 3g. ${ }^{14}$-Method B was used with amide $\mathbf{2 g}$ ($98 \mathrm{mg}, 0.46 \mathrm{mmol}$) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{Petrol}: \mathrm{EtOAc} 80: 20\right)$ to give ortho-tertbutylanisole $\mathbf{3 g}$ ($54 \mathrm{mg}, 75 \%$) as a clear liquid, $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.92 ; v_{\max } / \mathrm{cm}^{-1} 2997$, $2955(\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.30\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.78(1 \mathrm{H}, \mathrm{dd}, J 8$ and 2 , ArH), $6.81(1 \mathrm{H}, \mathrm{td}, J 8$ and 2, ArH), $7.10(1 \mathrm{H}, \mathrm{td}, J 8$ and $2, \mathrm{ArH}), 7.21(1 \mathrm{H}, \mathrm{dd}, J 8$ and 2, ArH); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 29.3,35.2,55.4,111.9,120.7,126.9,127.4,138.6,158.9 ; m / z(\mathrm{CI}) 165$ $(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $\left(\mathrm{M}^{+}\right) 164.1192\left(\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}\right.$ requires (M) 164.1198).

2-(tert-Butylsulfinyl)-N,N-diisopropyl-6-methoxybenzamide 5a. -By method A, amide 4a (860 $\mathrm{mg}, 4.15 \mathrm{mmol}$) and t-butyl t-butylthiosulfinate ${ }^{3}(789 \mathrm{mg}, 5.40 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 30:70) to give the sulfoxide $\mathbf{5 a}(932 \mathrm{mg}$, 72%). m.p. $72-74{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.40 ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 2970,2934(\mathrm{C}-\mathrm{H}), 1634(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.28\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.55(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.52(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.57(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.84(3 \mathrm{H}, \mathrm{s}$, OMe), 7.01 ($1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$), 7.47-7.49 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 20.5, 20.7, 21.0, 21.1, 24.0, 46.4, 51.5, 56.3, 58.2, 113.8, 118.7, 129.1, 129.7, 139.5, 155.6, 164.9; m/z (CI) 340 $(90 \%, \mathrm{M}+\mathrm{H}), 284(90 \%), 268(100 \%)$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 340.1938\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NSO}_{3}\right.$ requires (M) 340.1941).

2-(tert-Butylsulfinyl)-N,N-diisopropyl-3-methoxybenzamide 5b. -By method A, 4b (270 mg, $1.15 \mathrm{mmol})$ and t-butyl t-butylthiosulfinate ${ }^{3}(290 \mathrm{mg}, 1.49 \mathrm{mmol})$ gave a residue which was purified by flash chromatography (SiO_{2}; Petrol:EtOAc 40:60) to give the sulfoxide $\mathbf{5 b}$ (330 mg , 85%) as white crystals, m.p. $98-100^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.16 ; v_{\max } / \mathrm{cm}^{-1} 2969$ (C-H), $1631(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1:1 mixture of diastereoisomeric signals $0.86(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.08\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.21\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $1.26\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.40-1.47\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 3.23(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.28(1 \mathrm{H}$, sept, $J 7$, $\mathrm{NCH}), 3.39(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.61(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.80(3 \mathrm{H}, \mathrm{s}$, OMe), 6.67 ($2 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$), 6.72 ($1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$), $6.86(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.26(1 \mathrm{H}, \mathrm{t}, J 8$, $\mathrm{ArH}), 7.35(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.3,19.7,20.6,20.7,20.7,20.8,20.9,20.9$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
$25.2,25.9,45.4,46.0,50.8,51.2,55.7,55.8,58.8,60.1,110.2,112.1,117.7,121.1,123.9,126.4$, 131.9, 133.7, 140.1, 142.9, 157.2, 159.6, 167.7, 168.3; m/z (CI) 340 (100%, М+H) 266 (40\%); Acc. mass found $(\mathrm{M}+\mathrm{H}) 340.1950\left(\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires (M) 340.1941).

2-(tert-Butylsulfinyl)-N,N-diisopropyl-4-methoxybenzamide 5c. -By method A, 4c (295 mg , $1.26 \mathrm{mmol})$ and t-butyl t-butylthiosulfinate ${ }^{3}(317 \mathrm{mg}, 1.63 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc $\left.40: 60\right)$ to give the sulfoxide $5 \mathbf{5 c}(374 \mathrm{mg}$, 88%) as a colourless oil, $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) 0.15; $\mathrm{v}_{\max } / \mathrm{cm}^{-1} 2965,2933(\mathrm{C}-\mathrm{H}), 1651$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.85\left(6 \mathrm{H}, \mathrm{m}\right.$ (broad), $\left.\mathrm{CH}_{3}\right), 1.13\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.20(6 \mathrm{H}, \mathrm{m}$ (broad), CH_{3}), 3.30-3.50 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$), $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.92(1 \mathrm{H}, \mathrm{dd}, J 8$ and 1, ArH$), 7.05(1 \mathrm{H}, \mathrm{d}, J$ $8, \mathrm{ArH}), 7.28(1 \mathrm{H}, \mathrm{d}, J 1, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.1,20.5,20.8,21.0,23.6 ., 46.1,51.2$, 55.7, 57.9, 110.3, 118.9, 127.5, 131.7, 138.9, 159.7, 167.6; m/z (CI) 340 (100%, M+H) 266 (80\%); Acc. mass found $(\mathrm{M}+\mathrm{H}) 340.1946\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{~S}\right.$ requires (M) 340.1941).

2-(tert-Butylsulfinyl)-N,N-diisopropylnaphthalene-1-carboxamide 5d. -By method A, 4d (811 $\mathrm{mg}, 3.18 \mathrm{mmol}$) and t-butyl t-butylthiosulfinate ${ }^{3}(603 \mathrm{mg}, 4.13 \mathrm{mmol}, 94 \%$ ee) gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{Petrol}: \mathrm{EtOAc} 50: 50\right)$ to give the sulfoxide ($730 \mathrm{mg}, 64 \%$) as yellow crystals, m.p. $35-36^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.20 ; v_{\max } / \mathrm{cm}^{-1} 2973$, $2934(\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.72\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right)$, $1.10\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.45\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.21(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.44$ (1 H , sept, $J 7, \mathrm{NCH}$), 7.37-7.43 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.68-7.78$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $20.4,20.9,21.0,21.6,24.1,46.8,51.8,58.5,121.9,126.2,128.1,128.7,128.8,129.0,129.5$, 134.3, 135.2, 137.9, 166.7; m/z (CI) $360(70 \%, \mathrm{M}+\mathrm{H}), 304$ (100%); Acc. mass found ($\mathrm{M}+\mathrm{H}$) $360.1985\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NSO}_{2}\right.$ requires $\left.(M) 360.1992\right)$.

2-(tert-Butylsulfinyl)-N,N-diisopropyl-3,6-dimethoxybenzamide 5e. -By method A, 4e (295 $\mathrm{mg}, 1.11 \mathrm{mmol}$) and t-butyl t-butylthiosulfinate ${ }^{3}(281 \mathrm{mg}, 1.45 \mathrm{mmol}$,) gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2} ; \mathrm{EtOAc}\right)$ to give the sulfoxide $\mathbf{5 e}(61 \mathrm{mg}, 15 \%)$ as white crystals, m.p. 116-118 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(\mathrm{EtOAc}) 0.22 ; v_{\max } / \mathrm{cm}^{-1} 2969$, $2838(\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(500$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.35\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.51-1.53(6 \mathrm{H}, \mathrm{d}$, $\left.J 7, \mathrm{CH}_{3}\right), 3.47(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.67(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.76(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.84(3 \mathrm{H}, \mathrm{s}$, OMe), $6.85(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 6.93(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.1,20.8,20.9$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
21.2, 26.3, 46.4, 51.6, 56.1, 56.6, 59.1, 112.3, 115.4, 125.8, 132.1, 149.2, 153.5, 164.9; m/z (CI) $370(10 \%, \mathrm{M}+\mathrm{H}), 314(50 \%), 298(100 \%)$; Acc. mass found (M+H) $370.2051\left(\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}\right.$ requires (M) 370.2047).

2-(Di-tert-butylphosphino)-6-(tert-butylsulfinyl)-N,N-diethylbenzamide 5f. -By method A, amide $4 \mathbf{f}(323 \mathrm{mg}, 1.0 \mathrm{mmol})$ and t-butyl t-butylthiosulfinate ${ }^{3}(160 \mathrm{mg}, 1.4 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 70:30) to give the sulfoxide $\mathbf{5 f}(207 \mathrm{mg}, 49 \%)$ as an opaque oil, m.p. $50-52{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.23$; $v_{\max } / \mathrm{cm}^{-1}$ 2934, $2568(\mathrm{C}-\mathrm{H}), 1632(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.16\left(9 \mathrm{H}, \mathrm{d}, J 12, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}\right), 1.19(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.25\left(9 \mathrm{H}, \mathrm{d}, J 12, \mathrm{P}^{\mathrm{t}} \mathrm{Bu}\right), 1.26\left(9 \mathrm{H}, \mathrm{s}, \mathrm{S}(\mathrm{O})^{\mathrm{t}} \mathrm{Bu}\right), 1.31\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 3.03(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2}\right), 3.08\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.58-3.63\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.54(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.97(2 \mathrm{H}, \mathrm{d}, J 8$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.5,14.4,23.9,30.5$ ($3 \mathrm{C}, \mathrm{d}, J 15, \mathrm{PCCH}_{3}$), 31.7 (3C, d, $J 15$, PCCH_{3}), 32.7 ($1 \mathrm{C}, \mathrm{d}, J 25, \mathrm{PC}$), 33.4 ($1 \mathrm{C}, \mathrm{d}, J 25, \mathrm{PC}$), $39.0,43.5,58.4,127.4,127.6,138.6$, 139.1, 145.8, 146.1, 166.8; m/z (CI) $426(30 \%, \mathrm{M}+\mathrm{H}), 354$ (100%); Acc. mass found ($\mathrm{M}+\mathrm{H}$) $426.2586\left(\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NSO}_{2} \mathrm{P}\right.$ requires (M) 426.2590).

2-(tert-Butylsulfinyl)-6-(dimethylamino)-N,N-diethylbenzamide 5g. -By method A, amide $\mathbf{4 g}$ ($385 \mathrm{mg}, 1.75 \mathrm{mmol}$) and t-butyl t-butylthiosulfinate ${ }^{3}(383 \mathrm{mg}, 2.63 \mathrm{mmol}$) gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 50:50) to give the sulfoxide $\mathbf{5 g}$ (473 $\mathrm{mg}, 83 \%$) as an orange oil; $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.08 ; \mathrm{v}_{\max } / \mathrm{cm}^{-1} 2974,2790(\mathrm{C}-\mathrm{H}), 1635$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.18\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.20\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right)$, $2.74\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.47\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 7.03$ ($1 \mathrm{H}, \mathrm{dd}, J 8$ and 1, ArH), $7.38(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}), 7.43(1 \mathrm{H}, \mathrm{dd}, J 8$ and $1, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 12.8,14.2,24.1$, 39.8, 43.3, 44.9, 58.3, 119.7, 121.2, 129.8, 132.2, 140.4, 150.7, 167.3; m/z (CI) 325 (50\%, $\mathrm{M}+\mathrm{H}), 269(40 \%), 252(100 \%)$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 325.1949\left(\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{SO}_{2}\right.$ requires (M) 325.1944).

2-tert-Butyl-N,N-diisopropyl-6-methoxybenzamide 6a. -Method B was used with sulfoxide 5a ($114 \mathrm{mg}, 0.37 \mathrm{mmol}, 98 \%$ ee) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 70:30) to give the amide 6a ($36 \mathrm{mg}, 38 \%$) as white crystals, m.p. $74-76{ }^{\circ} \mathrm{C}$; R_{f} (70:30 EtOAc) 0.65; $v_{\text {max }} / \mathrm{cm}^{-1} 2926(\mathrm{C}-\mathrm{H}), 1614(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.00(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.04\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.33\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.36\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right)$,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
3.38 (1 H , sept, $J 7, \mathrm{NCH}$), 3.54 (1 H , sept, $J 7, \mathrm{NCH}$), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.63 ($1 \mathrm{H}, \mathrm{d}, J 8$, ArH), 6.99 ($1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$), 7.13 ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$); 20.2, 20.3, 20.4, 20.5, 32.5, 33.1, 46.2, 50.9, 55.7, 108.5, 120.6, 126.8, 126.8, 128.7, 148.3, 156.5, 169.8; m/z (CI) 292 $(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 292.2268\left(\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NO}_{2}\right.$ requires (M) 292.2271).

2-tert-Butyl-N,N-diisopropyl-3-methoxybenzamide 6b. -Method B was used with amide 5b ($230 \mathrm{mg}, 0.68 \mathrm{mmol}$) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the amide $\mathbf{6 b}$ ($30 \mathrm{mg}, 15 \%$ yield) as a colourless oil (mixture of product and starting material); $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.75 ; v_{\max } / \mathrm{cm}^{-1} 2966(\mathrm{C}-\mathrm{H}), 1632$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.08-1.12\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.39\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.42-1.50\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right)$, 3.43-3.47 (2H, m, NCH), 3.61 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 6.50 ($1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH}$), 6.77 ($1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}$), 7.05 $(1 \mathrm{H}, \mathrm{t}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ Mixture of compounds; $m / z(\mathrm{CI}) 292(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 292.2275\left(\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2}\right.$ requires (M) 292.2271).

2-tert-Butyl-N,N-diisopropyl-4-methoxybenzamide 6c. -Method B was used with amide 5c ($176 \mathrm{mg}, 0.52 \mathrm{mmol}$) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the amide $\mathbf{6 c}\left(119 \mathrm{mg}, 79 \%\right.$ yield) as a colourless oil; $\mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.85; $v_{\max } / \mathrm{cm}^{-1} 2965(\mathrm{C}-\mathrm{H}), 1634(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.43\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.55\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right)$, $3.46(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.71(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.70(1 \mathrm{H}, \mathrm{dd}, J 3,8$, ArH), $6.96(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.03(1 \mathrm{H}, \mathrm{d}, J 3,8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 20.0,20.1,20.5$, 20.6, 31.9, 36.7, 45.7, 50.9, 55.4, 110.0, 114.4, 128.5, 130.1, 148.9, 159.4, 172.9; m/z(CI) 292 $(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 292.2277\left(\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{2}\right.$ requires (M) 292.2271).

N,N,2-Triisopropyl-4-methoxybenzamide 6c’. -Method B was used with amide 5c (140 mg, $0.41 \mathrm{mmol})$ to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the ortho-isopropyl amide $\mathbf{6 c} \mathbf{c}^{\mathbf{}}\left(57 \mathrm{mg}, 50 \%\right.$ yield) as a colourless oil; $\mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.71; $v_{\max } / \mathrm{cm}^{-1} 2964(\mathrm{C}-\mathrm{H}), 1633(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.10(3 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.12\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.25\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.29\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.57-1.59(6 \mathrm{H}, \mathrm{m}$, CH_{3}), $3.00(1 \mathrm{H}$, sept, $J 7, \mathrm{ArCH}), 3.48(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.76(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.84$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.71(1 \mathrm{H}, \mathrm{dd}, J 3,8, \mathrm{ArH}), 6.86(1 \mathrm{H}, \mathrm{d}, J 3, \mathrm{ArH}), 7.02(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 20.8, 20.8, 20.9, 20.9, 23.6, 24.9, 30.9, 45.9, 50.9, 55.4, 111.0, 111.9, 126.2,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
130.7, 147.0, 160.0, 171.1; $m / z(\mathrm{CI}) 278$ ($100 \%, \mathrm{M}+\mathrm{H}$); Acc. mass found $(\mathrm{M}+\mathrm{H}) 278.2116$ $\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}_{2}\right.$ requires (M) 278.2115).

2-tert-Butyl-N,N-diisopropylnaphthalene-1-carboxamide 6d. -Method B was used with amide $\mathbf{5 d}(125 \mathrm{mg}, 0.35 \mathrm{mmol}, 52 \%$ ee) to give a residue that was purified by flash chromatography (SiO_{2}; Petrol:EtOAc 80:20) to give the amide $\mathbf{6 d}\left(62 \mathrm{mg}, 58 \%\right.$) as white crystals, m.p. $94-97{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}(70: 30 \mathrm{EtOAc}) 0.57 ; v_{\max } / \mathrm{cm}^{-1} 2966(\mathrm{C}-\mathrm{H}), 1603(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.73(3 \mathrm{H}, \mathrm{d}, J$ $7, \mathrm{CH}_{3}$), $1.04\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.43\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{C}} \mathrm{Bu}\right), 1.56\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.71\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right)$, 3.41 (1 H , sept, $J 7, \mathrm{NCH}$), 3.51 (1 H , sept, $J 7, \mathrm{NCH}$), $7.30-7.37$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.52 ($1 \mathrm{H}, \mathrm{d}, J 8$, ArH), 7.63-7.67 (2H, m, ArH), 7.81 ($1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.9,19.9,20.8$, $21.1,32.5,37.7,46.7,51.4,126.0,126.1,126.2,126.4,127.1127 .9,128.1,131.0,132.2,142.8$, 171.6; $m / z(\mathrm{CI}) 312(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 312.2325\left(\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}\right.$ requires (M) 312.2322).

2-tert-Butyl-N,N-diisopropyl-3-methoxybenzamide 6e. -Method B was used with sulfoxide 5e ($45 \mathrm{mg}, 0.12 \mathrm{mmol}$) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 80:20) to give the amide $\mathbf{6 e}\left(30 \mathrm{mg}, 76 \%\right.$ yield) as white needles, m.p. $119-122{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) 0.63; $v_{\text {max }} / \mathrm{cm}^{-1} 2967(\mathrm{C}-\mathrm{H}), 1621(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.95$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.07\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.39\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 1.43\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.47(3 \mathrm{H}, \mathrm{d}, J$ $\left.7, \mathrm{CH}_{3}\right), 3.36(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.58(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.62(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.72(3 \mathrm{H}, \mathrm{s}$, OMe), $6.62(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 6.72(1 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 19.9,20.0,20.4$, $20.5,30.8,37.6,46.1,50.9,56.0,56.6,109.9,112.3,128.8,135.9,150.6,154.1,169.5 ; ~ m / z(\mathrm{CI})$ $322(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 322.2376\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NO}_{3}\right.$ requires $\left.(M) 322.2377\right)$.

2-tert-Butyl-6-(dimethylamino)-N,N-diethylbenzamide $\mathbf{6 g}$. - Method B was used with amide 5g ($80 \mathrm{mg}, 0.24 \mathrm{mmol}$) to give a residue that was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 50:50) to give the amide $\mathbf{6 g}(40 \mathrm{mg}, 59 \%)$ as colourless oil; R_{f} (70:30 Petrol:EtOAc) 0.86; $v_{\max } / \mathrm{cm}^{-1} 2938(\mathrm{C}-\mathrm{H}), 1625(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.92(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 1.24\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{t}} \mathrm{Bu}\right), 2.52\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.91$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 3.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J 7, \mathrm{ArH}), 7.07-7.13$ (2H, m, ArH); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 12.3, 13.2, 32.1, 36.9, 38.4, 43.2, 46.2, 118.1, 123.3, 128.7,
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
133.2, 148.1, 152.3, 171.8; m/z (CI) 277 ($100 \%, \mathrm{M}+\mathrm{H}$); Acc. mass found ($\mathrm{M}+\mathrm{H}$) 277.2265 $\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}\right.$ requires (M) 277.2274).

2-sec-Butyl-6-(dimethylamino)-N,N-diethylbenzamide $\mathbf{6 g}$. \quad - -BuLi (0.53 ml of a 1.3 M solution in hexanes, 0.69 mmol) was added dropwise to sulfoxide $\mathbf{5 g}(80 \mathrm{mg}, 0.24 \mathrm{mmol})$ at -78 ${ }^{\circ} \mathrm{C}$. After 20 minutes saturated ammonium chloride soln. $(1 \mathrm{ml})$ was added and the mixture allowed to warm to room temperature. The mixture diluted with diethylether (30 ml), washed with saturated ammonium chloride solution ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromoatography $\left(\mathrm{SiO}_{2} ;\right.$ Petrol:EtOAc 80:20) to give the amide $\mathbf{6 g}$, ($35 \mathrm{mg}, 51 \%$) as yellow crystals, m.p. $>260{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.65; $v_{\max } / \mathrm{cm}^{-1} 2962,2933(\mathrm{C}-\mathrm{H}), 1625(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1: 1$ mixture of diastereoisomers, $0.75\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 0.80\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 0.90-1.00(6 \mathrm{H}, \mathrm{m}$, NMe_{2}), $1.05\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.00-1.19\left(9 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.38-1.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.55-1.65(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$), 2.50-2.58 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHAr}$), $2.65\left(12 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right.$), 2.90-3.05 ($4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), 3.40-3.60 $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 6.78(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.85(2 \mathrm{H}, \mathrm{d}, J 8, \mathrm{ArH}), 7.15-7.19(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) mixture of diastereoisomers; $m / z(\mathrm{CI}) 277(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found ($\mathrm{M}+\mathrm{H}$) $277.2279\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}\right.$ requires (M) 277.2274).

N,N-Diisopropyl-2-(isopropylthio)naphthalene-1-carboxamide 7. -By method A, 4d (1.19 g, $4.70 \mathrm{mmol})$ and diisopropyldisulfide $(0.97 \mathrm{ml}, 6.10 \mathrm{mmol})$ gave a residue which was purified by flash chromatography $\left(\mathrm{SiO}_{2} ;\right.$ Petrol:EtOAc $\left.70: 30\right)$ to give the sulfide $7(1.41 \mathrm{~g}, 92 \%)$ as white crystals, m.p. $72-74{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) $0.56 ; v_{\max } / \mathrm{cm}^{-1} 2967$, 2928 and 2867 (C-H), $1631(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.74\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.07-1.10(6 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{3}\right), 1.49\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.54\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.27(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}), 3.37-3.42$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 7.25-7.34(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.52-7.59(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 20.6, 21.2, 21.2, 21.7, 23.4, 24.1, 39.9, 46.5, 51.7, 125.4, 126.8, 127.4, 128.2, 128.4, 128.9, 130.6, 131.2, 133.0, 140.3, 168.4; m/z (CI) $330(100 \%, \mathrm{M}+\mathrm{H})$; Acc. mass found ($\mathrm{M}+\mathrm{H}$) 330.1887 $\left(\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NSO}\right.$ requires (M) 330.1886).

N,N-Diisopropyl-2-(isopropylsulfinyl)naphthalene-1-carboxamide 8. -The sulfide 7 (1.10 g , 3.34 mmol in 10 ml dry dichloromethane) was added dropwise to a stirred solution of $\sim 50 \%$ $\mathrm{mCPBA}(1.15 \mathrm{~g}, 6.68 \mathrm{mmol})$ in dry dichloromethane $(30 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After 2 hours the reaction
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
was quenched with 10% aq. sodium sulfite, diluted with 30 ml dichloromethane and washed with saturated bicarbonate solution ($3 \times 15 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and solvents evaporated under reduced pressure. The residue was purified by flash chromoatography $\left(\mathrm{SiO}_{2} ; \mathrm{Petrol}: E t O A c\right.$ 80:20) to give the sulfoxide 8 ($800 \mathrm{mg}, 70 \%$) as white crystals, m.p. $92-96{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}(70: 30$ Petrol:EtOAc) 0.42; $v_{\max } / \mathrm{cm}^{-1} 2971,2933,2871(\mathrm{C}-\mathrm{H}), 1626(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.45$ $\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.53\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.07(1 \mathrm{H}$, sept, $J 7, \mathrm{CH}), 3.29(1 \mathrm{H}$, sept, $J 7, \mathrm{CH}), 3.43$ (1 H , sept, $J 7, \mathrm{CH}$), $7.38-7.40(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.64(1 \mathrm{H}$, sept, $J 7, \mathrm{CH}), 7.72(1 \mathrm{H}$, sept, $J 7, \mathrm{CH})$, 7.77-7.83 (2H, sept, $J 7, \mathrm{CH}) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 13.2, 18.2, 20.5, 20.9, 21.2, 21.4, 46.9, 52.0, $54.5,120.7,125.6,128.2,128.4,129.0,129.4,129.4,134.9,135.3,136.3,166.7$; m/z (CI) 346 $(100 \%, \mathrm{M}+\mathrm{H}), 245(60 \%)$; Acc. mass found $(\mathrm{M}+\mathrm{H}) 346.1834\left(\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NSO}_{2}\right.$ requires (M) 346.1835).

2-(${ }^{13}$ C-tert-Butylsulfinyl)-N,N-diisopropylnaphthalene-1-carboxamide ${ }^{13} \mathbf{C}-5 \mathbf{d}$. -LDA (0.60 ml of a 1.8 M solution in hexanes, 1.09 mmol) was added dropwise to amide $8(250 \mathrm{mg}, 0.72$ $\mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$ giving a reddish-brown solution. After 30 minutes ${ }^{13} \mathrm{CH}_{3} \mathrm{I}(68 \mu \mathrm{~L}, 1.09 \mathrm{mmol})$ was added and the mixture was raised to room temperature giving a yellow solution. The mixture diluted with diethyl ether (30 ml), washed with saturated ammonium chloride solution ($3 \times 20 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by flash chromoatography $\left(\mathrm{SiO}_{2}\right.$; Petrol:EtOAc 50:50) to give the sulfoxide ${ }^{13} \mathbf{C}-5 \mathbf{d}(232 \mathrm{mg}$, 88%) as yellow crystals, m.p. $35-36{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}\left(70: 30\right.$ Petrol:EtOAc) 0.20 ; $v_{\max } / \mathrm{cm}^{-1} 2973,2934$ (CH), $1633(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.83\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.21(3 \mathrm{H}$, $\left.\mathrm{d}, J 128,{ }^{13} \mathrm{CH}_{3}\right), 1.22\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.57\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 1.65\left(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}_{3}\right), 3.33(1 \mathrm{H}$, sept, $J 7, \mathrm{NCH}$), 3.52 (1 H, sept, $J 7, \mathrm{NCH}$), 7.49-7.53 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.80-7.89 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}}\left(125 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 20.4, 20.9, 21.0, 21.6, 23.2 (major), 46.8, 51.8, 58.5, 121.9, 126.2, 128.1, 128.7, 128.8, 129.0, 129.5, 134.3, 135.2, 137.9, 166.7; m/z (CI) 361 (100%, M+H); Acc. mass found (M+H) $361.2036\left({ }^{13} \mathrm{CC}_{20} \mathrm{H}_{29} \mathrm{NO}_{2} \mathrm{~S}\right.$ requires (M) 361.2025).

1. Clayden, J.; Lai, L. W.; Helliwell, M., Tetrahedron 2004, 60, 4399.
\# Supplementary Material (ESI) for Chemical Communications
\# This journal is (c) The Royal Society of Chemistry 2006
2. Still, W. C.; Kahn, M.; Mitra, A., J. Org. Chem. 1978, 43, 2923.
3. Weix, D. J.; Ellman, J. A., Org. Lett. 2003, 5, 1317.
4. Lewis, J. C.; Wiedemann, S. H.; Bergman, R. G.; Ellman, J. A., Org. Lett. 2004, 6, 35 .
5. Hans, J. J.; Driver, R. W.; Burke, S. D., J. Org. Chem. 2004, 65, 2114.
6. Alonso, E.; Ramon, D. J.; Yus, M., Tetrahedron 1998, 54, 13629.
7. Tetrahedron 1998, 54, 13629.
8. Deyrup, J. A.; Szabo, W. A., J. Org. Chem. 1975, 40, 2048.
9. Tsutshi, H.; Ichikawa, T.; Narasaka, K., Bull. Chem. Soc. Jap. 1999, 72, 1869.
10. Brenstrum, T J; Brimble, M. A.; Stevenson, R. J., Tetrahedron 1994, 50, 4897.
11. Bowles, P.; Clayden, J.; Helliwell, M.; McCarthy, C.; Tomkinson, M.; Westlund, N., J. Chem. Soc. Perkin Trans. 1 1997, 2607.
12. Kwong, F. Y.; Lam, W. H.; Yeung, C. H.; Chan, K. S.; Chan, A. S. C., Chem. Commun. 2004, 1922.
13. Hjelmencrantz, A.; Berg, U., J. Org. Chem. 2002, 67, 3585.
14. Kamitori, Y.; Hojo, M.; Masuda, R.; Izumi, T.; Tsukamoto, S., J. Org. Chem. 1984, 49, 22.
