Supplementary Information

Chiroptical inversion induced by sandwiching units in chiral Polythiourethane

Atsushi Nagai, Bungo Ochiai, Takeshi Endo*

Experimental Section

Measurement. ${ }^{1} \mathrm{H}(270 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (67.5 MHz) spectra were recorded on a JEOL JNM EX-270 spectrometer using tetramethylsilane (TMS) as an internal standard in $\mathrm{CDCl}_{3}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, or DMSO- d_{6}. FT-IR spectra were obtained using a JASCO FT/IR-210 spectrometer. Specific rotations $\left([\alpha]_{D}\right)$ were measured on a JASCO DIP-1000 digital polarimeter that was equipped with a sodium lamp as 10 a light source. Circular dichroism (CD) spectra were measured on a JASCO J-720 spectropolarimeter. Number average molecular weight $\left(M_{\mathrm{n}}\right)$ and polydispersity $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ were estimated by size-exclusion chromatography (SEC) using a Tosoh HPLC HLC-8020 system equipped with four consecutive polystyrene gel columns [TSK gels (bead size, exclusion limited molecular weight); $\alpha \mathrm{M}\left(13 \mu \mathrm{~m},>1 \times 10^{7}\right.$), $\alpha 4000 \mathrm{H}\left(10 \mu \mathrm{~m},>1 \times 10^{6}\right), \alpha 3000 \mathrm{H}\left(7 \mu \mathrm{~m},>1 \times 10^{5}\right)$, and $\left.\alpha 2500 \mathrm{H}\left(7 \mu \mathrm{~m},>1 \times 10^{4}\right)\right]$; further, it had a refractive index and ultraviolet detectors at $40^{\circ} \mathrm{C}$. The system was operated at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$ using an N, N-dimethylformamide (DMF) solution (50 mM lithium
15 bromide and 50 mM phosphoric acid) as an eluent. Polystyrene standards were employed for calibration. Differential scanning calorimetry (DSC) measurements were performed using an SII DSC-6200 instrument at a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ under nitrogen atmosphere.

Materials. 4(S)-(Methoxycarbonyl)-1,3-oxazolidine-2-thione($\mathbf{S}_{\mathbf{L}}$), 4(S)-(methoxycarbonyl)-1,3-oxazolidine-2-thione ($\mathbf{S}_{\mathbf{D}}$), and $4(\mathrm{~S})$-(methoxycarbonyl)- N-benzoyl-1,3-oxazolidine-2-thione $\left(\mathbf{B z S}_{\mathbf{L}}\right)$ were synthesized according to the previously reported method. ${ }^{[4-6]} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled over CaH_{2} before use. The other reagents were used as received.

Copolymerization of $\mathbf{S}_{\mathbf{L}}$ with $\mathbf{B z S}_{\mathbf{L}}$. Typical procedure: $\operatorname{Dry} \mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ and TfOMe ($10 \mu \mathrm{~L}, 9.15 \mu \mathrm{~mol}, 3.04 \mathrm{~mol} \%$ to monomers) were introduced into a polymerization tube containing $\mathbf{S}_{\mathbf{L}}(0.24 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathbf{B z S} \mathbf{S}_{\mathbf{L}}(0.40 \mathrm{~g}, 1.5 \mathrm{mmol})$. The resulting mixture remained homogeneous. After quenching with methanol $(0.2 \mathrm{~mL})$, the resulting mixture was poured into ethyl ether (300 mL) in order to precipitate a polymer. The polymer was collected by filtration with suction and dried under vacuum. Poly $\left(\mathbf{S}_{\mathbf{L}}-\mathrm{co}-\mathbf{B z} \mathbf{S}_{\mathbf{L}}\right)$ was obtained as a colorless solid in high yield (Yield $=93 \%)$. $[\alpha]_{\mathrm{D}}{ }^{30}=-83.4^{\circ}\left(c=0.1 \mathrm{~g} / \mathrm{dL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.34$ (initiating 25 end, $\left.\mathrm{S}-\mathrm{CH}_{3}\right), 3.04-4.32\left(4 \mathrm{H},-\mathrm{CH}_{2}-\right.$, and $\left.-\mathrm{CH}_{2}-\right), 3.71-3.79\left(6 \mathrm{H},-\mathrm{OCH}_{3}\right.$, and $\left.-\mathrm{OCH} \mathrm{O}_{3}\right), 5.38-5.72(2 \mathrm{H},>\mathrm{CH}-$, and $>\mathrm{CH}-), 7.32-7.95(5 \mathrm{H}$, $\left.-\mathrm{C}_{6} \mathrm{H}_{5}\right), 8.29-8.87(1 \mathrm{H},-\mathrm{NH}-) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=30.87\left(-\mathrm{CH}_{2}-\right), 32.17\left(-\mathrm{CH}_{2}-\right), 52.25\left(-\mathrm{OCH}_{3}\right), 52.67(-\mathrm{OCH} 3), 54.26(-\mathrm{CH}<)$, $59.98(-\mathrm{CH}<), 128.36,129.39,133.70,134.93\left(-\mathrm{C}_{5} \mathrm{H}_{6}\right), 164.40$ (inversed thiourethane, $-\mathrm{SCONH}-$), 166.58 (-SCONH-), 168.35 (-SCONH-), $170.19\left(-\mathrm{NHCOC}_{5} \mathrm{H}_{6}\right), 171.16\left(-\mathrm{COOCH}_{3}\right), 171.20$ (inversed ester, $\left.-\mathrm{COOCH}_{3}\right), 172.18\left(-\mathrm{COOCH}_{3}\right) \mathrm{ppm}$. IR (KBr): $3347,1755,1690$, $1654,1504,1442,1296,1203 \mathrm{~cm}^{-1}$.
30
$\operatorname{Poly}\left(\mathbf{S}_{\mathbf{D}}-\mathbf{c o}-\mathbf{B z S}_{\mathbf{L}}\right)\left(\operatorname{from} \mathbf{S}_{\mathbf{D}}(1.5 \mathrm{mmol})\right.$ and $\left.\mathbf{B z S} \mathbf{S}_{\mathbf{L}}(1.5 \mathrm{mmol})\right)$: Yield $=94 \% .[\alpha]_{\mathrm{D}}{ }^{30}=-94.8^{\circ}\left(c=0.1 \mathrm{~g} / \mathrm{dL}^{(i n ~} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.34$ (initiating end, $\left.\mathrm{S}-\mathrm{CH}_{3}\right), 2.68-4.15\left(4 \mathrm{H},-\mathrm{CH}_{2}-\right.$, and $\left.-\mathrm{CH}_{2}-\right), 3.70-3.81\left(6 \mathrm{H},-\mathrm{OCH}_{3}\right.$, and $\left.-\mathrm{OCH} \mathrm{C}_{3}\right), 4.80-5.56(2 \mathrm{H}$, $>\mathrm{CH}-$, and $>\mathrm{CH}-), 7.27-7.62\left(5 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.80-8.51(1 \mathrm{H},-\mathrm{NH}-) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=30.56\left(-\mathrm{CH}_{2}-\right), 32.12\left(-\mathrm{CH}_{2}-\right), 52.19$ $\left(-\mathrm{OCH}_{3}\right), 52.58\left(-\mathrm{OCH}_{3}\right), 54.21(-\mathrm{CH}<), 59.90(-\mathrm{CH}<), 128.44,129.48,132.27,133.79\left(-C_{5} \mathrm{H}_{6}\right), 166.58(-\mathrm{SCONH}), 168.37(-\mathrm{SCONH}-)$, $170.18\left(-\mathrm{NHCOC}_{5} \mathrm{H}_{6}\right), 171.24\left(-\mathrm{COOCH}_{3}\right), 172.15\left(-\mathrm{COOCH}_{3}\right) \mathrm{ppm}$. IR (KBr): 3302, 1749, 1690, 1658, 1512, 1442, 1296, 1247, 1203 $35 \mathrm{~cm}^{-1}$.

Block copolymerization of $\mathbf{S}_{\mathbf{L}}$ with $\mathbf{B z S}_{\mathbf{L}}$. Typical procedure: A solution of $\mathbf{S}_{\mathbf{L}}(0.24 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{TfOMe}(10 \mu \mathrm{~L}, 9.15$ $\mu \mathrm{mol}, 3.04 \mathrm{~mol} \%$ to monomer) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was placed in a polymerization tube under nitrogen atmosphere. The resulting mixture was subjected to polymerization at $30^{\circ} \mathrm{C}$ for 16 h under nitrogen. After $\mathbf{S}_{\mathbf{L}}$ was completely consumed, a solution of $\mathbf{B z S} \mathbf{S}_{\mathbf{L}}(0.40 \mathrm{~g}$, $1.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added to the polymerization mixture. The reactive mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 4 d , quenched with

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2006
40 methanol, and poured into ethyl ether in order to precipitate a polymer. The polymer was collected by filtration with suction and dried under vacuum. Poly $\left(\mathbf{S}_{\mathbf{L}}-b-\mathbf{B z S}_{\mathbf{L}}\right)$ was obtained as a colorless solid in quantitative yield. $[\alpha]_{\mathrm{D}}{ }^{30}=-43.2^{\circ}\left(c=0.1 \mathrm{~g} / \mathrm{dL} \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.34$ (initiating end, $\left.\mathrm{S}-\mathrm{CH}_{3}\right), 2.72-4.15\left(4 \mathrm{H},-\mathrm{CH}_{2}-\right.$, and $\left.\left.-\mathrm{CH}_{2}-\right), 3.73-3.79(6 \mathrm{H},-\mathrm{OCH} 3 \text {, and }-\mathrm{OCH})_{3}\right), 4.39-5.58(2 \mathrm{H},>\mathrm{CH}-$, and $>\mathrm{CH}-), 7.27-7.76\left(5 \mathrm{H},-\mathrm{C}_{6} H_{5}\right), 7.82-8.48(1 \mathrm{H},-\mathrm{NH}-) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=30.54\left(-\mathrm{CH}_{2}-\right), 32.16\left(-\mathrm{CH}_{2}-\right), 52.15\left(-\mathrm{OCH}_{3}\right), 52.42$ $\left(-\mathrm{OCH}_{3}\right), 54.25(-\mathrm{CH}<), 59.88(-\mathrm{CH}<), 128.42,129.43,132.29,133.74\left(-C_{5} \mathrm{H}_{6}\right), 166.56(-\mathrm{SCONH}-), 168.32(-\mathrm{SCONH}-), 170.14$
$45\left(-\mathrm{NHCOC}_{5} \mathrm{H}_{6}\right), 171.25\left(-\mathrm{COOCH}_{3}\right), 172.14\left(-\mathrm{COOCH}_{3}\right) \mathrm{ppm}$. IR (KBr): 3301, 1744, 1691, 1658, 1512, 1447, 1295, 1246, $1203 \mathrm{~cm}^{-1}$.
$\operatorname{Poly}\left(\mathbf{S}_{\mathbf{D}}-\boldsymbol{b}-\mathrm{BzS}_{\mathrm{L}}\right):$ Yield $=$ quantitative. $[\alpha]_{\mathrm{D}}{ }^{30}=-198.5^{\circ}\left(c=0.1 \mathrm{~g} / \mathrm{dL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.34$ (initiating end, $\left.\mathrm{S}-\mathrm{CH}_{3}\right), 2.76-3.95\left(4 \mathrm{H},-\mathrm{CH}_{2}-\right.$, and $\left.-\mathrm{CH}_{2}-\right), 3.73-3.79\left(6 \mathrm{H},-\mathrm{OCH}_{3}\right.$, and $\left.-\mathrm{OCH}_{3}\right), 4.40-5.54(2 \mathrm{H},>\mathrm{CH}-$, and $>\mathrm{CH}-), 7.27-7.88\left(5 \mathrm{H},-\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.96-8.64(1 \mathrm{H},-\mathrm{NH}-) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.43\left(-\mathrm{CH}_{2}-\right), 31.99\left(-\mathrm{CH}_{2}-\right), 52.10\left(-\mathrm{OCH}_{3}\right), 52.49\left(-\mathrm{OCH}_{3}\right), 54.16(-\mathrm{CH}<), 59.55$ $(-\mathrm{CH}<), 128.42,129.44,132.26,133.79\left(-\mathrm{C}_{5} \mathrm{H}_{6}\right), 166.51(-\mathrm{SCONH}-), 168.35(-\mathrm{SCONH}-), 170.09\left(-\mathrm{NHCOC}_{5} \mathrm{H}_{6}\right), 171.22\left(-\mathrm{COOCH}_{3}\right)$, $50172.15\left(-\mathrm{COOCH}_{3}\right) \mathrm{ppm}$. IR (KBr): 3301, 1743, 1694, 1657, 1511, 1444, 1298, 1244, $1204 \mathrm{~cm}^{-1}$.

Block copolymerization of $\mathbf{B z S}_{\mathbf{L}}$ with a mixture of $\mathbf{S}_{\mathbf{L}}$ and $\mathbf{B z S} \mathbf{S}_{\mathbf{L}}$. Typical procedure: A solution of $\mathbf{B z S} \mathbf{S}_{\mathbf{L}}(0.27 \mathrm{~g}, 1.0$ mmol) and TfOMe ($19 \mu \mathrm{~L}, 16.7 \mu \mathrm{~mol}, 16.7 \mathrm{~mol} \%$ to monomer) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was placed in a polymerization tube under a nitrogen atmosphere. The resulting mixture was subjected to polymerization at $30^{\circ} \mathrm{C}$ for 16 h under nitrogen. After $\mathbf{B z S}_{\mathbf{L}}$ was completely consumed, a solution of $\mathbf{S}_{\mathbf{L}}(0.48 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathbf{B z S} \mathbf{S}_{\mathbf{L}}(0.53 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added to the reactive solution. The
55 resulting mixture was stirred at $30^{\circ} \mathrm{C}$ for 4 d , quenched with methanol, and poured into ethyl ether to precipitate a polymer. The polymer was collected by filtration with suction and dried under vacuum. $\operatorname{Poly}\left(\mathbf{B z S}_{\mathbf{L}}-b-\left(\mathbf{S}_{\mathbf{L}}-c o-\mathbf{B z S}_{\mathbf{L}}\right)\right)$ was obtained as a colorless solid. Yield $=$ $95 \% \cdot[\alpha]_{\mathrm{D}}{ }^{30}=-159.7^{\circ}\left(c=0.1 \mathrm{~g} / \mathrm{dL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . T_{\mathrm{m}}=119.9^{\circ} \mathrm{C}(15.6 \mathrm{~mJ} / \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=2.33$ (initiating end, S-CH3$), 2.74-4.25$ $\left(4 \mathrm{H},-\mathrm{CH}_{2}-\right.$, and $\left.-\mathrm{CH}_{2}-\right), 3.73-3.79\left(6 \mathrm{H},-\mathrm{OCH}_{3}\right.$, and $\left.-\mathrm{OCH}_{3}\right), 4.40-5.74(2 \mathrm{H},>\mathrm{CH}-$, and $>\mathrm{CH}-), 7.27-7.77\left(5 \mathrm{H},-\mathrm{C}_{6} H_{5}\right), 7.80-8.55(1 \mathrm{H}$, $-\mathrm{NH}-) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.87\left(-\mathrm{CH}_{2}-\right), 32.17\left(-\mathrm{CH}_{2}-\right), 52.24\left(-\mathrm{OCH}_{3}\right), 52.68\left(-\mathrm{OCH}_{3}\right), 54.25(-\mathrm{CH}<), 59.99(-\mathrm{CH}<), 128.45$,
$60129.47,133.80,134.92\left(-\mathrm{C}_{5} \mathrm{H}_{6}\right), 164.38(-\mathrm{SCONH}-), 168.35(-\mathrm{SCONH}-), 170.19\left(-\mathrm{NHCOC}_{5} \mathrm{H}_{6}\right), 171.16\left(-\mathrm{COOCH}_{3}\right), 172.18\left(-\mathrm{COOCH}_{3}\right)$ ppm. IR (KBr): 3313, 1747, 1693, 1649, 1302, 1252, $1205 \mathrm{~cm}^{-1}$.
Poly $\left(\mathrm{BzS}_{\mathrm{L}}-b-\left(\mathrm{S}_{\mathrm{D}}-c \boldsymbol{c}-\mathrm{BzS}_{\mathrm{L}}\right)\right):$ Yield $=98 \% \cdot[\alpha]_{\mathrm{D}}{ }^{30}=-196.5^{\circ}\left(c=0.1 \mathrm{~g} / \mathrm{dL}^{\circ}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . T_{\mathrm{m}}=147.1^{\circ} \mathrm{C}(39.6 \mathrm{~mJ} / \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=$ 2.33 (initiating end, $\left.\mathrm{S}-\mathrm{CH}_{3}\right)$, 2.61-4.27 ($4 \mathrm{H},-\mathrm{CH}_{2}-$, and $\left.-\mathrm{CH}_{2}-\right), 3.74-3.79\left(6 \mathrm{H},-\mathrm{OCH}_{3}\right.$, and $\left.-\mathrm{OCH}_{3}\right), 4.26-5.90(2 \mathrm{H},>\mathrm{CH}-$, and $>\mathrm{CH}-)$, 7.38-7.94 (5H, $\left.-\mathrm{C}_{6} H_{5}\right), 8.00-8.55(1 \mathrm{H},-\mathrm{NH}-) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.58\left(-\mathrm{CH}_{2}-\right), 32.13\left(-\mathrm{CH}_{2}-\right), 52.22\left(-\mathrm{OCH}_{3}\right), 52.61\left(-\mathrm{OCH}_{3}\right)$, $6554.20(-\mathrm{CH}<), 59.92(-\mathrm{CH}<), 128.45,129.47,132.25,133.77\left(-C_{5} \mathrm{H}_{6}\right), 166.50(-\mathrm{SCONH}-), 168.30(-\mathrm{SCONH}-), 170.13\left(-\mathrm{NHCOC}_{5} \mathrm{H}_{6}\right)$, $171.20\left(-\mathrm{COOCH}_{3}\right), 172.11\left(-\mathrm{COOCH}_{3}\right) \mathrm{ppm}$. IR (KBr): 3303, 1743, 1692, 1657, 1512, 1445, 1295, 1247, $1206 \mathrm{~cm}^{-1}$.

Fig. 1S ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of poly $\left(\mathbf{S}_{\mathbf{L 5 1}}-\mathrm{co}-\mathbf{B z S}_{\mathbf{L} 49}\right)$.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

70 Fig. 2S CD spectra of (a) poly $\left(\mathbf{S}_{\mathbf{L}}\right)\left(M_{\mathrm{n}}=3300, M_{\mathrm{w}} / M_{\mathrm{n}}=1.14\right)$, (b) $\operatorname{poly}\left(\mathbf{S}_{\mathbf{D}}\right)\left(M_{\mathrm{n}}=3500, M_{\mathrm{w}} / M_{\mathrm{n}}=1.14\right)$, and (c) $\operatorname{poly}\left(\mathbf{B z S}_{\mathbf{L}}\right)$ $\left(M_{\mathrm{n}}=3500, M_{\mathrm{w}} / M_{\mathrm{n}}=1.19\right)$.

Fig. 3S The observed Cotton effect curves (1) and linearly combined presumable Cotton effect curves (2) of the obtained 75 copolymers [(a) poly $\left(\mathbf{S}_{\mathbf{L} 91}-\mathrm{CO}-\mathrm{BzS}_{\mathbf{L} 9}\right)$, (b) $\operatorname{poly}\left(\mathbf{S}_{\mathbf{L} 74}-\mathrm{CO}-\mathrm{BzS}_{\mathbf{L 2 6}}\right)$, (c) $\operatorname{poly}\left(\mathbf{S}_{\mathbf{L 5 1}}-\mathrm{Co}-\mathrm{BzS}_{\mathbf{L 4 9}}\right)$, (d) $\operatorname{poly}\left(\mathbf{S}_{\mathbf{L 1 6}}-\mathrm{Co}-\mathrm{BzS}_{\mathbf{L 8 4}}\right)$, and (e) $\left.\operatorname{poly}\left(\mathbf{S}_{\mathbf{L} 7-c o-}-\mathbf{B z S}_{\mathbf{L} 93}\right)\right]$.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Fig. 4S The observed Cotton effects curves (1) and linearly combined presumable Cotton effect curves (2) of the obtained 80 block copolymers [(a) poly $\left(\mathbf{S}_{\mathbf{L} 53}-b-\mathbf{B z S}_{\mathbf{L} 47}\right)$ and (b) $\operatorname{poly}\left(\mathbf{S}_{\mathbf{D} 50}-b-\mathbf{B z S}_{\mathbf{L} 50}\right)$].

Fig. 5S Synthesis of block copolymers poly $\left(\mathbf{B z S}_{\mathbf{L}}-b-\left(\mathbf{S}_{\mathbf{D}}-c o-\mathbf{B z S}_{\mathbf{L}}\right)\right)$ and $\operatorname{poly}\left(\mathbf{B z S}_{\mathbf{L}}-b-\left(\mathbf{S}_{\mathbf{L}}-c o-\mathbf{B z S}_{\mathbf{L}}\right)\right)$.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

Fig. 6S DSC traces of (a) poly $\left(\mathbf{B z S}_{\mathbf{L}}-b-\left(\mathbf{S}_{\mathbf{D}}-c o-\mathbf{B z S}_{\mathbf{L}}\right)\right)$ and (b) $\operatorname{poly}\left(\mathbf{B z S}_{\mathbf{L}}-b-\left(\mathbf{S}_{\mathbf{L}}-c o-\mathbf{B z S}_{\mathbf{L}}\right)\right)$.

