Supplementary Information

Chiroptical inversion induced by sandwiching units in chiral Polythiourethane

Atsushi Nagai, Bungo Ochiai, Takeshi Endo*

Experimental Section

5

Measurement. ¹H (270 MHz) and ¹³C NMR (67.5 MHz) spectra were recorded on a JEOL JNM EX-270 spectrometer using tetramethylsilane (TMS) as an internal standard in CDCl₃, CD₂Cl₂, or DMSO- d_6 . FT-IR spectra were obtained using a JASCO FT/IR-210 spectrometer. Specific rotations ([α]_D) were measured on a JASCO DIP-1000 digital polarimeter that was equipped with a sodium lamp as 10 a light source. Circular dichroism (CD) spectra were measured on a JASCO J-720 spectropolarimeter. Number average molecular weight (M_p) and polydispersity (M_w/M_p) were estimated by size-exclusion chromatography (SEC) using a Tosoh HPLC HLC-8020 system

- equipped with four consecutive polystyrene gel columns [TSK gels (bead size, exclusion limited molecular weight); $\alpha M (13 \mu m, > 1 \times 10^7)$, $\alpha 4000H (10 \mu m, > 1 \times 10^6)$, $\alpha 3000H (7 \mu m, > 1 \times 10^5)$, and $\alpha 2500H (7 \mu m, > 1 \times 10^4)$]; further, it had a refractive index and ultraviolet detectors at 40 °C. The system was operated at a flow rate of 1.0 mL/min using an *N*,*N*-dimethylformamide (DMF) solution (50 mM lithium 15 bromide and 50 mM phosphoric acid) as an eluent. Polystyrene standards were employed for calibration. Differential scanning calorimetry
- (DSC) measurements were performed using an SII DSC-6200 instrument at a heating rate of 10 °C/min under nitrogen atmosphere.

Materials. 4(S)-(Methoxycarbonyl)-1,3-oxazolidine-2-thione(S_L), 4(S)-(methoxycarbonyl)-1,3-oxazolidine-2-thione (S_D), and 4(S)-(methoxycarbonyl)-*N*-benzoyl-1,3-oxazolidine-2-thione (BzS_L) were synthesized according to the previously reported method.^[4-6] CH₂Cl₂ was distilled over CaH₂ before use. The other reagents were used as received.

- 20 **Copolymerization of S_L with BzS_L.** *Typical procedure*: Dry CH₂Cl₂ (6.0 mL) and TfOMe (10 μ L, 9.15 μ mol, 3.04 mol% to monomers) were introduced into a polymerization tube containing S_L (0.24 g, 1.5 mmol) and BzS_L (0.40 g, 1.5 mmol). The resulting mixture remained homogeneous. After quenching with methanol (0.2 mL), the resulting mixture was poured into ethyl ether (300 mL) in order to precipitate a polymer. The polymer was collected by filtration with suction and dried under vacuum. Poly(S_L-*co*-BzS_L) was obtained as a colorless solid in high yield (Yield = 93%). [α]_D³⁰ = -83.4°(*c* = 0.1 g/dL in CH₂Cl₂). ¹H NMR (CDCl₃): δ = 2.34 (initiating
- 25 end, S-CH₃), 3.04–4.32 (4H, -CH₂-, and -CH₂-), 3.71–3.79 (6H, -OCH₃, and -OCH₃), 5.38–5.72 (2H, >CH-, and >CH-), 7.32–7.95 (5H, -C₆H₅), 8.29–8.87 (1H, -NH-) ppm. ¹³C NMR (CDCl₃): δ = 30.87 (-CH₂-), 32. 17 (-CH₂-), 52.25 (-OCH₃), 52.67 (-OCH₃), 54.26 (-CH<), 59.98 (-CH<), 128.36, 129.39, 133.70, 134.93 (-C₅H₆), 164.40 (inversed thiourethane, -SCONH-), 166.58 (-SCONH-), 168.35 (-SCONH-), 170.19 (-NHCOC₅H₆), 171.16 (-COOCH₃), 171.20 (inversed ester, -COOCH₃), 172.18 (-COOCH₃) ppm. IR (KBr): 3347, 1755, 1690, 1654, 1504, 1442, 1296, 1203 cm⁻¹.
- 30 Poly(S_D-*co*-BzS_L) (from S_D (1.5 mmol) and BzS_L (1.5 mmol)): Yield = 94%. $[\alpha]_D^{30}$ = -94.8° (*c* = 0.1 g/dL in CH₂Cl₂). ¹H NMR (CDCl₃): δ = 2.34 (initiating end, S-CH₃), 2.68–4.15 (4H, -CH₂-, and -CH₂-), 3.70–3.81 (6H, -OCH₃, and -OCH₃), 4.80–5.56 (2H, >CH-, and >CH-), 7.27–7.62 (5H, -C₆H₅), 7.80–8.51 (1H, -NH-) ppm. ¹³C NMR (CDCl₃): δ = 30.56 (-CH₂-), 32. 12 (-CH₂-), 52.19 (-OCH₃), 52.58 (-OCH₃), 54.21 (-CH<), 59.90 (-CH<), 128.44, 129.48, 132.27, 133.79 (-C₅H₆), 166.58 (-SCONH-), 168.37 (-SCONH-), 170.18 (-NHCOC₅H₆), 171.24 (-COOCH₃), 172.15 (-COOCH₃) ppm. IR (KBr): 3302, 1749, 1690, 1658, 1512, 1442, 1296, 1247, 1203 35 cm⁻¹.

Block copolymerization of S_L with BzS_L. *Typical procedure*: A solution of S_L (0.24 g, 1.5 mmol) and TfOMe (10 μ L, 9.15 μ mol, 3.04 mol% to monomer) in dry CH₂Cl₂ (3.0 mL) was placed in a polymerization tube under nitrogen atmosphere. The resulting mixture was subjected to polymerization at 30 °C for 16 h under nitrogen. After S_L was completely consumed, a solution of BzS_L (0.40 g, 1.5 mmol) in CH₂Cl₂ (3.0 mL) was added to the polymerization mixture. The reactive mixture was stirred at 30 °C for 4 d, quenched with

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

- 40 methanol, and poured into ethyl ether in order to precipitate a polymer. The polymer was collected by filtration with suction and dried under vacuum. Poly(S_L-*b*-BzS_L) was obtained as a colorless solid in quantitative yield. [α]_D³⁰ = -43.2° (*c* = 0.1 g/dL in CH₂Cl₂). ¹H NMR (CDCl₃): δ = 2.34 (initiating end, S-CH₃), 2.72–4.15 (4H, -CH₂-, and -CH₂-), 3.73–3.79 (6H, -OCH₃, and -OCH₃), 4.39–5.58 (2H, >CH-, and >CH-), 7.27–7.76 (5H, -C₆H₅), 7.82–8.48 (1H, -NH-) ppm. ¹³C NMR (CDCl₃): δ = 30.54 (-CH₂-), 32.16 (-CH₂-), 52.15 (-OCH₃), 54.25 (-CH<), 59.88 (-CH<), 128.42, 129.43, 132.29, 133.74 (-C₅H₆), 166.56 (-SCONH-), 168.32 (-SCONH-), 170.14
- 45 (-NHCOC₅H₆), 171.25 (-COOCH₃), 172.14 (-COOCH₃) ppm. IR (KBr): 3301, 1744, 1691, 1658, 1512, 1447, 1295, 1246, 1203 cm⁻¹.
 Poly(S_D-b-BzS_L): Yield = quantitative. [α]_D³⁰ = -198.5° (*c* = 0.1 g/dL in CH₂Cl₂). ¹H NMR (CDCl₃): δ = 2.34 (initiating end, S-CH₃), 2.76-3.95 (4H, -CH₂-, and -CH₂-), 3.73–3.79 (6H, -OCH₃, and -OCH₃), 4.40–5.54 (2H, >CH-, and >CH-), 7.27–7.88 (5H, -C₆H₅), 7.96–8.64 (1H, -NH-) ppm. ¹³C NMR (CDCl₃): δ = 30.43 (-CH₂-), 31. 99 (-CH₂-), 52.10 (-OCH₃), 52.49 (-OCH₃), 54.16 (-CH<), 59.55 (-CH<), 128.42, 129.44, 132.26, 133.79 (-C₅H₆), 166.51 (-SCONH-), 168.35 (-SCONH-), 170.09 (-NHCOC₅H₆), 171.22 (-COOCH₃), 50 172.15 (-COOCH₃) ppm. IR (KBr): 3301, 1743, 1694, 1657, 1511, 1444, 1298, 1244, 1204 cm⁻¹.
 - Block copolymerization of BzS_L with a mixture of S_L and BzS_L . *Typical procedure*: A solution of BzS_L (0.27 g, 1.0 mmol) and TfOMe (19 µL, 16.7 µmol, 16.7 mol% to monomer) in dry CH₂Cl₂ (2.0 mL) was placed in a polymerization tube under a nitrogen atmosphere. The resulting mixture was subjected to polymerization at 30 °C for 16 h under nitrogen. After BzS_L was completely consumed, a solution of S_L (0.48 g, 3.0 mmol) and BzS_L (0.53 g, 2.0 mmol) in CH₂Cl₂ (10 mL) was added to the reactive solution. The
- 55 resulting mixture was stirred at 30 °C for 4 d, quenched with methanol, and poured into ethyl ether to precipitate a polymer. The polymer was collected by filtration with suction and dried under vacuum. Poly(BzS_L -*b*-(S_L -*co*- BzS_L)) was obtained as a colorless solid. Yield = 95%. $[\alpha]_D^{30} = -159.7^\circ$ (c = 0.1 g/dL in CH₂Cl₂). $T_m = 119.9$ °C (15.6 mJ/mg). ¹H NMR (CDCl₃): $\delta = 2.33$ (initiating end, S-CH₃), 2.74-4.25 (4H, -CH₂-, and -CH₂-), 3.73–3.79 (6H, -OCH₃, and -OCH₃), 4.40–5.74 (2H, >CH-, and >CH-), 7.27–7.77 (5H, -C₆H₅), 7.80–8.55 (1H, -NH-) ppm. ¹³C NMR (CDCl₃): $\delta = 30.87$ (-CH₂-), 32. 17 (-CH₂-), 52.24 (-OCH₃), 52.68 (-OCH₃), 54.25 (-CH<), 59.99 (-CH<), 128.45,
- 60 129.47, 133.80, 134.92 (-C₅H₆), 164.38 (-SCONH-), 168.35 (-SCONH-), 170.19 (-NHCOC₅H₆), 171.16 (-COOCH₃), 172.18 (-COOCH₃) ppm. IR (KBr): 3313, 1747, 1693, 1649, 1302, 1252, 1205 cm⁻¹.

Poly(BzS_L-*b*-(S_D-*co*-BzS_L)): Yield = 98%. $[\alpha]_D^{30} = -196.5^{\circ}$ (*c* = 0.1 g/dL in CH₂Cl₂). *T*_m = 147.1 °C (39.6 mJ/mg). ¹H NMR (CDCl₃): $\delta = 2.33$ (initiating end, S-CH₃), 2.61—4.27 (4H, -CH₂-, and -CH₂-), 3.74–3.79 (6H, -OCH₃, and -OCH₃), 4.26–5.90 (2H, >CH-, and >CH-), 7.38–7.94 (5H, -C₆H₅), 8.00–8.55 (1H, -NH-) ppm. ¹³C NMR (CDCl₃): $\delta = 30.58$ (-CH₂-), 32. 13 (-CH₂-), 52.22 (-OCH₃), 52.61 (-OCH₃),

 $65 54.20 (-CH<), 59.92 (-CH<), 128.45, 129.47, 132.25, 133.77 (-C_5H_6), 166.50 (-SCONH-), 168.30 (-SCONH-), 170.13 (-NHCOC_5H_6), 171.20 (-COOCH_3), 172.11 (-COOCH_3) ppm. IR (KBr): 3303, 1743, 1692, 1657, 1512, 1445, 1295, 1247, 1206 cm⁻¹.$

Fig. 1S ¹H NMR spectra (CDCl₃) of poly(S_{L51} -*co*-**BzS**_{L49}).

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

70 Fig. 2S CD spectra of (a) poly(S_L) ($M_n = 3300$, $M_w/M_n = 1.14$), (b) poly(S_D) ($M_n = 3500$, $M_w/M_n = 1.14$), and (c) poly(BzS_L) ($M_n = 3500$, $M_w/M_n = 1.19$).

Fig. 3S The observed Cotton effect curves (1) and linearly combined presumable Cotton effect curves (2) of the obtained 75 copolymers [(a) $poly(S_{L91}-co-BzS_{L9})$, (b) $poly(S_{L74}-co-BzS_{L26})$, (c) $poly(S_{L51}-co-BzS_{L49})$, (d) $poly(S_{L16}-co-BzS_{L84})$, and (e) $poly(S_{L7}-co-BzS_{L93})$].

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Fig. 4S The observed Cotton effects curves (1) and linearly combined presumable Cotton effect curves (2) of the obtained 80 block copolymers [(a) $poly(S_{L53}-b-BzS_{L47})$ and (b) $poly(S_{D50}-b-BzS_{L50})$].

Fig. 5S Synthesis of block copolymers poly(BzS_L-b-(S_D-co-BzS_L)) and poly(BzS_L-b-(S_L-co-BzS_L)).

85

Fig. 6S DSC traces of (a) $poly(BzS_L-b-(S_D-co-BzS_L))$ and (b) $poly(BzS_L-b-(S_L-co-BzS_L))$.