Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Stereoselective synthesis of bicyclic lactones by annelation with functionalised orthoesters.

Nuno Maulide and István E. Markó*

Université catholique de Louvain, Département de Chimie, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.

Electronic Supporting Information.

Instrumentation and procedures.

Routine nuclear magnetic resonance (NMR) spectra were recorded on a VARIAN GEMINI-300 (1 H 300MHz and 13 C 75MHz). 1 H NMR chemical shifts (δ_{H}) are reported in ppm downfield from internal tetramethyl silane (TMS). 13 C NMR spectra were recorded using CDCl₃ as the internal standard. Splitting patterns in 1 H spectra are designed as s, singlet; d, doublet; t, triplet; b, broad and m, multiplet.

Low resolution mass spectra (EI) were recorded using VARIAN MATT-44 and FINNIGAN MATTSQ 70 spectrometers.

Infra-red spectra (IR) were taken as thin films on a SHIMADZU spectrometer and recorded in cm⁻¹.

Thin layer chromatography (TLC) was performed on MERCK silica gel 60 F_{254} aluminum-backed plates. The plates were visualised using 254 nm UV light and developed using an alkaline KMnO4 solution (1% KMnO₄/ 5% Na₂CO₃). Flash chromatography was performed using Rocc silica gel 60 (40-63 μ m) under pressure with the stated solvents.

All solvents were routinely distilled prior to use. Reactions were performed under a dry, inert atmosphere of argon unless stated otherwise.

The following abbreviations are used: rt, room temperature; hr, hour; min, minute; mmol, millimole; mol, mole; mg, milligram; g, gram; mL, milliliter, µL, microliter.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Typical experimental procedures.

Condensation step: Preparation of 7c

To a suspension of ZnCl₂ (116 mg, 0.85 mmol, 0.7 eq.) in CH₂Cl₂ (5 mL) at -78°C are sequentially added with stirring orthoester **6c** (480 mg, 1.82 mmol, 1.5 eq.) and furan derivative **5a** (0.2 mL, 1.2 mmol, 1 eq.). The mixture is slowly warmed to rt and monitored by TLC. Upon completion, the reaction is quenched by adding 5 mL of a sat. NaHCO₃ solution. The aqueous layer is repeatedly extracted with CH₂Cl₂, dried (MgSO₄) and concentrated under reduced pressure. Purification by rapid flash chromatography (silica, PE/AcOEt 4:1) afforded **7c** (385 mg, 95%).

¹H NMR (300 MHz, CDCl₃): δ 7.54 (dd, J = 5.7, 1.8 Hz, 1 H), 6.126 (dd, J = 5.7, 2.1 Hz, 1 H), 5.08 (br s, 1 H), 3.61-3.22 (m, 6 H), 1.92-1.66 (m, 4 H), 1.24-1.11 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ 172.7, 154.5, 122.0, 100.8, 84.0, 56.8, 56.7, 33.9, 27.2, 21.1, 15.5, 15.1; IR(cm⁻¹): 2975, 2362, 1759, 1732, 1596, 1443, 1375; MS (APCI+ev): m/z (%): 262 (100) [M-OEt]⁺, 233 (50), 227 (25), 181 (20), 153 (20), 111 (15); HRMS (ES) calcd. for C₁₂H₁₉O₄NaBr (M+Na): 329.0364; found 329.0363.

Cyclisation step: Preparation of 8b

To a solution of **7c** (200 mg, 0.65 mmol, 1 eq.) in benzene (6.5 mL) were sequentially added in one portion TTMSS (0.31 mL, 1.0 mmol, 1.5 eq) and AIBN (16 mg, 0.1 mmol, 0.15 eq.) and the mixture was refluxed for 2 hours. After cooling, removal of the solvent under reduced pressure and flash chromatography of the residue (silica, PE/AcOEt 6:1) afforded **8b** (130 mg, 88%).

¹H NMR (300 MHz, CDCl₃): δ 4.36 (d, J = 3.9 Hz, 1 H), 3.60-3.45 (m, 4 H), 2.60-5.52 (m, 2 H), 2.34-2.28 (m, 1 H), 1.82-1.40 (m, 6 H), 1.23-1.17 (m, 6 H); ¹³C NMR (75 MHz, CDCl₃): δ 176.7, 98.1, 79.9, 55.5, 55.4, 36.8, 35.0, 28.5, 26.6, 19.2, 15.3, 15.2; IR(cm⁻¹): 2972, 2927, 2854, 1786, 1662; MS (APCI+ev): m/z (%): 183 (100) $[M-OEt]^+$, 169 (25), 155 (35), 137 (15), 123 (15), 109 (20), 95 (30), 81 (12); Elemental analysis calcd. for C₁₂H₂₀O₄: C 63,18%; H 8.84%; found C 62,74%; H 8,86%.