Electronic supplementary information

Fig. S1 Coordination mode of L_{a} in $\mathbf{1}$.

Fig. S2 Coordination mode of L_{b} in $\mathbf{2}$.

Fig. S3 View of the one-dimensional lead-oxide chain.

Fig. S4 View of the three-dimensional supramolecular architecture of $\mathbf{2}$ along a axis.

Synthesis and Structure description of $\left\{\left[\mathbf{P b}_{1.5}(\mathbf{L})\right] \cdot\left(\mathbf{H}_{2} \mathbf{O}\right)_{1.5}\right\}_{\mathrm{n}}(\mathbf{3})$:

Using $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ instead of the mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ under the same conditions, $\mathbf{3} \ddagger \S$ was generated. X-ray crystallographic study shows that the organic ligand in $\mathbf{3}$, different from those observed in $\mathbf{1}$ and 2, is not dinitrified owing to the absence of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, but entirely deprotonated (L). There exist two unique $\mathrm{Pb}^{\text {II }}$ atoms in the asymmetry unit (Fig. S5), the Pb 1 is coordinated by four oxygen atoms from two deprotonated hydroxyl groups and two carboxylate groups of different L ligands, in a pseudo trigonal bipyramidal geometry with O 4 A and O 4 B axial $\left(<\mathrm{O} 4 \mathrm{~A}-\mathrm{Pb}-\mathrm{O} 4 \mathrm{~B}=142.2(8)^{\circ}\right), \mathrm{O} 1$ and O 1 A equatorial $\left(\angle \mathrm{O} 1-\mathrm{Pb}-\mathrm{O} 1 \mathrm{~A}=96.2(8)^{\circ}\right),{ }^{1}$ the average $\mathrm{Pb} 1-\mathrm{O}$ bond distance is $2.45 \AA$. Whereas the Pb 2 center is in a highly distorted pyramidal geometry, three oxygen atoms from one deprotonated hydroxyl group and two carboxylate groups of different L ligands comprise the basal plane, the Pb 2 center derivates from the basal plane by $0.5617 \AA$. In contrast to the high coordination numbers of the large radius $\mathrm{Pb}^{\text {II }}$ atom, only a few examples containing low three-coordinated $\mathrm{Pb}^{\mathrm{II}}$ atoms were obtained. ${ }^{2}$ Two Pb 2 and one Pb 1 atoms share two hydroxyl oxygen atoms and two carboxylate oxygen atoms to generate a trinuclear unit (Fig. S6), in which the neighboring $\mathrm{Pb} \cdots \mathrm{Pb}$ distance is $4.099 \AA$, slightly longer than that in 2. The no dinitrified L ligand acts as a μ_{5}-bridge and extends the trinuclear units into a three-dimensional framework with large channels containing free water molecules as spacer fillers (Fig. S7, S8). The intramolecular hydrogen bonds between water molecules and carboxylate groups as well as between water molecules and water molecules further stabilize the framework.

References

\ddagger Synthesis of 3: The procedure was similar to the synthesis of $\mathbf{1}$ and $\mathbf{2}$ except for using $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(0.50 \mathrm{mmol}, 165.6 \mathrm{mg})$ instead of the mixture of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. Yellow block crystals of $\mathbf{3}$ were obtained (yield: $81.0 \mathrm{mg}, 47 \%$ based on Pb). Elemental analysis (\%): calcd. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~Pb}_{1.5} \mathrm{O}_{6.5}$ (516.93): C 18.59, H 1.17; found: C 18.57, H 1.21. IR (KBr, cm ${ }^{-1}$): 3503 (bs), 1565 (s$), 1504$ (m), 1435 (m), 1383
(m), 1337 (s$), 1263$ (m), 1140 (w), 815 (m), 715 (s$), 565$ (s)
§ Crystal data for 3: $M_{r}=516.93$, Monoclinic, Space group $C 2 / c, a=10.000(9) \AA, b=$ $13.05(1) \AA, c=15.55(1) \AA, \beta=99.85(1)^{\circ}, V=2000(3) \AA^{3}, Z=8, T=173(2) \mathrm{K}, \rho_{\text {calcd }}=$ $3.433 \mathrm{~g} \mathrm{~cm}^{-3}$, A total of 5887 reflections were collected, of which 1758 were unique reflections, $R($ int $)=0.0815, \mu\left(\mathrm{Mo}_{\mathrm{K} \alpha}\right)=25.260 \mathrm{~mm}^{-1}$, parameters $=154, G O F=1.048$, $R_{1}=0.0481, w R_{2}=0.1230(I \geq 2 \sigma(I))$ and $R_{1}=0.0695, w R_{2}=0.2083$ for all data. CCDC: 288166 for 3.

1 P. Klüfers and J. Schuhmacher, Angew. Chem. Int. Ed. Engl., 1994, 33, 1863.
2 (a) D. J. Teff, J. C. Huffman and K. G. Caulton, Inorg. Chem., 1995, 34, 2491; (b) D. J. Teff, J. C. Huffman and K. G. Caulton, Inorg. Chem., 1996, 35, 2981; (c) K. W. Terry, K. Su, T. D. Tilley and A. L. Rheingold, Polyhedron, 1998, 17, 891.

Fig. S5 Perspective view of the coordination geometries of two unique $\mathrm{Pb}^{\mathrm{II}}$ centers and the entirely deprotonated organic ligand (L) with 30% probability ellipsoids.

Fig. S6 View of the trinuclear unit.

Fig. S7 Coordination mode of L in 3.

Fig. S8 View of the three-dimensional framework of $\mathbf{3}$ along a axis, the free water molecules were omitted for clarify.

Fig. S9 Mass spectrogram of the solution (a) and the cluster structure of $\mathbf{1}$ (b).

