Supporting Information for the Paper

Domino metal-free allene- β-lactam-based access to functionalized pyrroles

Benito Alcaide,*a Pedro Almendros,*b and María C. Redondoa
apepartamento de Química Orgánica I, Facultad de Química, Universidad Complutense de Madrid, 28040-Madrid, Spain
bInstituto de Química Orgánica General, CSIC, Juan de la Cierva 3, 28006-Madrid, Spain
E-mail: alcaideb@quim.ucm.es; iqoa392@iqog.csic.es
\section*{Table of Contents}
General procedure for the synthesis of α-allenic alcohols 1a-e and$2 a-b$
S1
Characterization of α-allenic alcohols $\mathbf{1 a - e}$ and $\mathbf{2 a - b}$
..... S2
General procedure for the synthesis of α-allenyl methyl ethers
..... 3a-
e and 4a-b
..... S 7
Characterization of α-allenyl methyl ethers $3 \mathbf{a}-\mathbf{e}$ and $\mathbf{4 a - b}$
..... S 7
Preparation and characterization of pyrroles 5a-e
..... S11
Preparation and characterization of pyrroles 6a-b
..... S14
Indium-promoted reaction between 3-substituted prop-2-ynyl bromides and carbonyl- β-lactams; general procedure for the synthesis of α-allenic alcohols 1a-e and 2a-b. 1-Bromo-2-butyne or 1-bromo-3-phenyl-2-propyne (3.0 mmol) was added to a well stirred suspension of the corresponding 4-oxoazetidine-2-carbaldehydes or

azetidine-2,3-diones (1.0 mmol) and indium powder (6.0 mmol) in THF/ $\mathrm{NH}_{4} \mathrm{Cl}$ (aq. sat.) (1:5, 5 mL$)$ at $0{ }^{\circ} \mathrm{C}$. After disappearance of the starting material (TLC) the mixture was extracted with ethyl acetate (3 x 5 mL$)$. The organic extract was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate/hexanes or dichloromethane/ethyl acetate mixtures gave analytically pure compounds. Spectroscopic and analytical data for some representative pure forms of 1 and 2 follow.

Preparation of α-allenic alcohols (+)-1a and anti-(+)-1a. From 92 mg (0.38 mmol) of the appropriate aldehyde, and after chromatography of the residue using dichloromethane/ethyl acetate (9.5:0.5) as eluent, 104 mg (75\%) of the more polar compound (+)$\mathbf{1 a}$ and 12 mg (9\%) of the less polar compound anti-(+)-1a were obtained.
α-Allenic alcohol (+)-1a. Colorless oil; $[\alpha]_{D}=+99.8$ (c = 1.3 in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\boldsymbol{\delta}=7.51$ (m, 2 H), 7.32 and $6.87(\mathrm{dd}, \mathcal{J}=6.8,2.2 \mathrm{~Hz}$, each 2 H$), 7.31(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~m}$, 3H), $4.72(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=4.9,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79 and 3.69 (s, each 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta=$ 208.2, 164.4, 156.8, 133.9, 129.6, 128.6, 127.3, 126.8, 119.8, 114.5, 106.0, 84.3, 80.2, 67.1, 60.0, 59.4, 55.5; IR ($\left.\mathrm{CHCl}_{3}\right): \mathrm{v}=$ 3419, 2989, 1940, $1746 \mathrm{~cm}^{-1}$; MS (ES): m / z (\%): 352 (100) [M+H], 351 (34) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ (351.4): C 71.78, H 6.02, N 3.99; found C 71.90, H 6.00, N 3.97.
α-Allenic alcohol anti-(+)-1a. Colorless oil; $[\alpha]_{\mathrm{D}}=+86.2$ (c = 0.6 in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.34$ (m, 7H), $6.88(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.17$ and $4.77(\mathrm{dd}, J=12.0,2.5 \mathrm{~Hz}$,
each 1 H$), 5.09(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~m}, 2 \mathrm{H}), 3.79$ and $3.63(\mathrm{~s}$, each 3 H$)$, 1.82 (br s, 1H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=208.6,165.5$, 156.9, 134.2, 131.1, 129.2, 128.7, 127.9, 121.0, 114.3, 106.8, 83.2, 81.1, 68.6, 60.3, 60.2, 55.9; IR ($\left.\mathrm{CHCl}_{3}\right): \mathrm{V}=3422,2995$, 1944, $1748 \mathrm{~cm}^{-1}$; $\mathrm{MS}(\mathrm{ES}): \mathrm{m} / \mathrm{z}(\%): 352$ (100) $[M+\mathrm{H}]^{+}$, 351 (26) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$ (351.4): C 71.78, H 6.02, N 3.99; found C 71.92, H 6.06, N 3.96.

Preparation of α-allenic alcohols (+)-1b and anti-(+)-1b. From $198 \mathrm{mg}(0.66 \mathrm{mmol})$ of the appropriate aldehyde, and after chromatography of the residue using hexanes/ethyl acetate (4:1) as eluent, $115 \mathrm{mg}(42 \%)$ of the more polar compound (+)-1b and 30 mg (11\%) of the less polar compound anti-(+)-1b were obtained.
$\alpha-A l l e n i c$ alcohol (+)-1b. Colorless solid; m. p. $129-131{ }^{\circ} \mathrm{C}$; $[\boldsymbol{\alpha}]_{\mathrm{D}}=+149.0\left(\mathrm{C}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta$ $=7.52(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}$ $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.27(\mathrm{~d}, \mathcal{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J$ $=6.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, \mathrm{J}=6.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, 2.50 (br s, 1H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=207.9$, 163.9, 157.6, 156.6, 133.8, 130.7, 129.4, 128.7, 127.4, 126.6, 122.4, 120.3, 115.9, 113.9, 106.6, 80.7, 79.5, 69.3, 60.5, 55.4; IR (KBr): $v=3420,2990,1942,1751 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}$ (\%): 413 (10) $[M]^{+}, 262(100)[M-151]^{+} ;$elemental analysis calcd (\%) for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{4}$ (413.4): C 75.53, H 5.61, N 3.39; found C 75.66, H 5.57, N 3.36.
$\alpha-A l l e n i c$ alcohol anti-(+)-1b. Colorless oil; $[\alpha]_{\mathrm{D}}=+200.0 \quad(\mathrm{c}$ $=1.2$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.37(\mathrm{~m}, 9 \mathrm{H})$, $7.12(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.24(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ $(\mathrm{dd}, \mathrm{J}=5.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}$,

```
1H); '13}\textrm{C}\mathrm{ NMR (75 MHz, CDCl 3, 25 '}\textrm{C}): \delta = 208.0, 162.8, 157.5, 156.9,
131.6, 129.7, 128.7, 128.3, 127.4, 126.7, 123.0, 119.7, 116.4,
114.6, 105.7, 81.7, 80.6, 66.7, 59.6, 55.3; IR (CHCl ): v = 3411,
2988, 1940, 1750 cm }\mp@subsup{}{-1}{
[M-151]+; elemental analysis calcd (%) for }\mp@subsup{\textrm{C}}{26}{}\mp@subsup{\textrm{H}}{23}{}\mp@subsup{\textrm{NO}}{4}{}\mathrm{ (413.4): C
75.53, H 5.61, N 3.39; found C 75.64, H 5.58, N 3.42.
```

α-Allenic alcohol (+)-1c. From 56 mg (0.331 mmol) of the appropriate aldehyde, and after chromatography of the residue using hexanes/ethyl acetate (2:1) as eluent gave compound (+)-1c (60 mg, 64\%) as a colorless oil; $[\alpha]_{D}=+70.6$ (c $=1.0$ in CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.39(\mathrm{~m}, 5 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.24$ $(\mathrm{m}, ~ 3 \mathrm{H}), 4.94(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (ddt, $\mathrm{J}=$ 15.5, $5.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=5.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (ddt, $J=15.5,6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~d}, \mathcal{J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}$, 3H), $2.58(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=$ 207.7, 167.4, 133.9, 132.0, 128.6, 127.4, 126.7, 118.2, 107.0, 83.6, 80.6, 68.7, 59.8, 59.6, 44.1; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=3424,2991$, 1940, $1748 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%): 286 (100) $\left[M+\mathrm{H}^{+}, 285\right.$ (31) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3}$ (285.3): C 71.56, H $6.71, \mathrm{~N} 4.91$; found C 71.48 , H 6.69 , N 4.92 .

Preparation of α-allenic alcohols (\pm)-1d and anti-(\pm)-1d. From 200 mg (0.91 mmol) of the appropriate aldehyde, and after chromatography of the residue using dichloromethane/ethyl acetate (25:1) as eluent, 101 mg (33\%) of the more polar compound (土)-1d and 140 mg (46\%) of the less polar compound anti-(土)-1d were obtained.
α-Allenic alcohol (\pm)-1d. Colorless oil; ${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.34(\mathrm{~m}, 7 \mathrm{H}), 6.79(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.24$ and
5.03 (dd, J = 12.4, 2.0 Hz , each 1H), 4.80 (dt, J = 7.6, 2.0 Hz , 1H), $4.44(\mathrm{dd}, \mathrm{J}=7.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=$ $7.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (br s, 1 H$), 1.21(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=207.5,169.3,156.3,133.7,131.6$, 128.9, 128.7, 126.6, 120.5, 113.9, 107.0, 81.2, 70.1, 58.2, 55.5, 46.0, 9.3; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): ~ V=3425,2993,1943,1749 \mathrm{~cm}^{-1} ; \mathrm{MS}(E I): \mathrm{m} / \mathrm{z}$ (\%): 335 (27) $[M]^{+}, 279$ (100) [M-56] ${ }^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}(335.4): \mathrm{C} 75.20$, H 6.31, N 4.18; found C 75.32 , H 6.27, N 4.15.
α-Allenic alcohol anti-(\pm)-1d. Colorless oil; ${ }^{1}{ }_{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.30(\mathrm{~m}, 7 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{~m}$, 1H), 5.09 (dd, J = 4.4, $2.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{dd}, \mathcal{J}=5.4,4.8 \mathrm{~Hz}$, 1H), 3.73 ($s, 3 H), 3.41(\mathrm{dd}, \mathrm{J}=7.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (br s , 1H), $1.46(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=$ 208.3, 169.4, 156.5, 134.6, 130.4, 128.8, 127.6, 127.0, 120.5, 114.5, 106.6, 80.5, 67.7, 57.6, 55.6, 47.3, 10.2; IR (CHCl_{3}): $\mathrm{v}=$ 3422, 2991, 1940, $1750 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 335 (33) [M]+, 279 (100) [M-56] ${ }^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{3}$ (335.4): C 75.20, H 6.31, N 4.18; found C 75.34, H 6.35, N 4.14.
α-Allenic alcohol (+)-1e. From $170 \mathrm{mg}(0.61 \mathrm{mmol})$ of the appropriate aldehyde, and after chromatography of the residue using hexanes/ethyl acetate (3:1) as eluent gave compound (+)-1e (180 mg, 75\%) as a colorless oil; $[\alpha]_{D}=+65.8$ (c = 0.8 in CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=7.31(\mathrm{~m}, 7 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 5.16(\mathrm{~m}, 4 \mathrm{H}), 4.73(\mathrm{dd}, \mathrm{J}=11.5,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.31(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ and 3.68 (s, each 3 H), 2.80 (dd, J = 14.3, $6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=14.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=208.3,165.8,156.6,131.6,131.0$,
128.7, 127.3, 126.6, 121.1, 118.2, 114.6, 113.8, 106.8, 88.0, 80.6, 67.8, 63.3, 55.4, 54.1, 34.8; IR ($\left.\mathrm{CHCl}_{3}\right): \mathrm{v}=3417,2993$, 1942, $1749 \mathrm{~cm}^{-1}$; MS (EI): m / z (\%): 391 (21) [M] ${ }^{+}$, 127 (100) [M194]+; elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}$ (391.5): C 73.64, H $6.44, \mathrm{~N} 3.58$; found $\mathrm{C} 73.51, \mathrm{H} 6.40$, N 3.61.
α-Allenic alcohol (+)-2a. From $50 \mathrm{mg}(0.17 \mathrm{mmol})$ of the appropriate azetidine-2,3-dione, 53 mg (76\%) of compound (+)-2a was obtained as a colorless oil; $[\alpha]_{D}=+48.2\left(c=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.64$ and 7.35 (m, each 2 H), 7.28 (m, 1H), 6.84 and 7.57 (dd, each $2 \mathrm{H}, \mathrm{J}=7.0,2.5 \mathrm{~Hz}$), 5.29 (s, $2 \mathrm{H}), 4.55(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 4.28(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=8.8,6.8 \mathrm{~Hz}), 4.00(\mathrm{brs}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77$ (dd, 1 H , $J=8.8,6.8 \mathrm{~Hz}), 1.46$ and $1.36(\mathrm{~s}$, each 3 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=207.6,166.1,156.7,132.5,130.7,128.6,128.4$, 127.8, 120.1, 113.9, 109.8, 105.9, 84.2, 80.9, 76.5, 66.7, 66.3, 55.4, 26.4, 25.2; IR $\left(\mathrm{CHCl}_{3}\right): v=3332,2988,1938,1746 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%): 408 (100) $\left[M+H^{+}, 407\right.$ (15) [M] ${ }^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{5}$ (407.5): C 70.75, H 6.18, N 3.44 ; found C 70.87, H 6.14, N 3.41 .
α-Allenic alcohol (-)-2b. From $58 \mathrm{mg}(0.257 \mathrm{mmol})$ of the appropriate azetidine-2,3-dione, 54 mg (62%) of compound (-)-2b was obtained as a colorless oil; $[\alpha]_{D}=-75.8$ (c = 0.7 in CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.59(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 3 \mathrm{H}), 5.61$ $(\mathrm{m}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 5.13(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}$ $=7.1,5.6 \mathrm{~Hz}), 4.22$ (ddt, $1 \mathrm{H}, \mathrm{J}=15.4,4.6,1.7 \mathrm{~Hz}), 4.17$ (dd, $1 \mathrm{H}, \mathrm{J}=8.8,6.8 \mathrm{~Hz}), 3.80(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 3.67$ (dd, $1 \mathrm{H}, \mathrm{J}=8.8,5.4 \mathrm{~Hz}), 1.34$ and 1.40 (s, each 3 H) ; ${ }^{13} \mathrm{C} \operatorname{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=207.3,168.8,132.8,131.3,128.5,127.6$,
118.3, 109.7, 105.8, 84.8, 80.3, 76.0, 66.6, 64.9, 43.4, 26.5, 25.0; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): V=3334,2991,1940,1745 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ES}): \mathrm{m} / \mathrm{z}$ (\%): 342 (100) $[M+H]^{+}, 341(24)\left[M^{+}\right.$; elemental analysis calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{4}(341.4): \mathrm{C} 70.36, \mathrm{H} 6.79, \mathrm{~N} 4.10 ;$ found $\mathrm{C} 70.44, \mathrm{H} 6.82, \mathrm{~N}$ 4.12 .

Reaction between methyl sulfate and α-allenic alcohols 1 and 2; general procedure for the synthesis of α-allenyl methyl ethers 3a-e and 4a-b. Tetrabutyl ammonium iodide (cat), 50\% aqueous sodium hydroxide (18 mL) and dimethyl sulfate (0.60 mmol) were sequentially added at room temperature to a solution of the corresponding α-allenol (0.92 mmol) in dichloromethane (18 mL). The reaction was stirred for 24 h and then aqueous ammonia (30\%) was added (2.5 mL), before being partitioned between dichloromethane and water. The aqueous phase was extracted with dichloromethane (3 x 15 mL$)$, the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate/hexanes or dichloromethane/ethyl acetate mixtures gave analytically pure compounds. Spectroscopic and analytical data for some representative pure forms of 3 and 4 follow.
α-Allenyl methyl ether (+)-3a. From $95 \mathrm{mg}(0.27 \mathrm{mmol})$ of α allenic alcohol (+)-1a, and after chromatography of the residue using hexanes/ethyl acetate (3:1) as eluent gave the α-allenyl methyl ether (+)-3a (67 mg , 68\%) as a colorless solid; m. p. 138$140{ }^{\circ} \mathrm{C} ; \quad[\boldsymbol{\alpha}]_{\mathrm{D}}=+26.4\left(\mathrm{C}=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=7.56(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.21$ ($\mathrm{m}, 2 \mathrm{H}$) , 4.52 ($\mathrm{m}, 3 \mathrm{H}), 3.78$ and 3.44 (s, each 3 H$), 3.22$ ($\mathrm{s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=209.6,165.6,156.4,134.9$,
131.7, 128.7, 127.3, 127.0, 119.9, 113.9, 104.4, 83.0, 80.8, 78.9, 60.8, 60.0, 57.3, 55.5; $\operatorname{IR}(\mathrm{KBr}): ~ V=2985,1942,1748 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (ES): m/z (\%): 366 (100) $\left[M+\mathrm{H}^{+}, 365\right.$ (22) $[M]^{+} ;$elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$ (365.4): C 72.31, H 6.34, N 3.83 ; found C 72.44, H 6.38, N 3.80.
α-Allenyl methyl ether anti-(+)-3a. From $80 \mathrm{mg}(0.22 \mathrm{mmol})$ of α-allenic alcohol anti-(+)-1a, and after chromatography of the residue using hexanes/ethyl acetate (3:1) as eluent gave the α allenyl methyl ether anti-(+)-3a (51 mg, 64\%) as a colorless oil; $[\alpha]_{D}=+24.8\left(c=1.0\right.$ in $\left.C H C l_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=$ $7.27(\mathrm{~m}, 5 \mathrm{H}), 6.88$ and $6.60(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}$, each 2 H$), 4.95$ and 4.67 (d, J = 12.2 Hz , each 2 H), 4.70 (d, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ (dd, J = 8.7, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ and 3.63 $(\mathrm{s}$, each 3 H$), 3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$): $\delta=$ 210.4, 164.8, 156.4, 133.6, 129.4, 128.1, 126.9, 126.8, 120.7, 113.4, 102.3, 83.8, 80.5, 77.5, 59.8, 55.8, 55.2; IR ($\left.\mathrm{CHCl}_{3}\right): \mathrm{v}=$ 2989, 1944, $1751 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%): 366 (100) [M+H]+, 365 (14) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$ (365.4): C 72.31, H 6.34, N 3.83; found C 72.45, H 6.30, N 3.80 .
α-Allenyl methyl ether (+)-3b. From $115 \mathrm{mg}(0.27 \mathrm{mmol})$ of $\alpha-$ allenic alcohol (+)-1b, and after chromatography of the residue using hexanes/ethyl acetate (3:1) as eluent gave the α-allenyl methyl ether (+)-3b (85 mg, 74\%) as a colorless oil; [$\boldsymbol{\alpha}]_{\mathrm{D}}=+10.0$ ($c=0.6$ in CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=7.64$ (d, J = $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~m}, ~ 8 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.87(\mathrm{~m}, ~ 3 \mathrm{H}), 5.26$ (d, J $=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{~m}, 2 \mathrm{H}), 3.81$ and 3.31 (s, each 3H) ; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2 \mathrm{C}^{\circ} \mathrm{C}\right): \delta=210.1,164.1,157.8,156.5$, 134.6, 131.4, 129.4, 128.7, 127.3, 127.1, 122.2, 120.0, 115.7,
113.8, 103.3, 81.1, 79.1, 78.6, 60.1, 56.9, 55.4; IR ($\left.\mathrm{CHCl}_{3}\right): \mathrm{v}=$ 2994, 1944, $1749 \mathrm{~cm}^{-1} ; 428$ (100) $\left[M+\mathrm{H}^{+}, 427\right.$ (18) [M] ${ }^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}$ (427.5): C 75.86, H 5.89, N 3.28; found C 76.00 , H 5.86 , N 3.25 .
α-Allenyl methyl ether (-)-3c. From $200 \mathrm{mg}(0.70 \mathrm{mmol})$ of α allenic alcohol (+)-1c, and after chromatography of the residue using hexanes/ethyl acetate (1:1) as eluent gave the α-allenyl methyl ether (-)-3c (140 mg, 67\%) as a colorless oil; $[\boldsymbol{\alpha}]_{\mathrm{D}}=-51.0$ ($\mathrm{C}=0.7$ in CHCl_{3}); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.52$ (m, 2H), $7.29(\mathrm{~m}, ~ 3 \mathrm{H}), 5.79(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12$ (ddt, $J=15.4,5.1,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05$ (dd, $J=9.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (ddt, $J=15.1,6.6$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ and 3.31 (s, each 3 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=209.9,167.6,131.9,131.5,128.6,128.4,127.1,127.0$, 117.9, 83.7, 80.8, 78.6, 59.5, 59.2, 55.4, 44.1; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=$ 2995, 1945, $1750 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%): 300 (100) [M+H]+, 299 (17) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ (299.4): C 72.22, $\mathrm{H} 7.07, \mathrm{~N} 4.68$; found C 72.35 , H 7.02 , N 4.71 .
α-Allenyl methyl ether (\pm)-3d. From $120 \mathrm{mg}(0.35 \mathrm{mmol})$ of α allenic alcohol (\pm)-1d, and after chromatography of the residue using hexanes/ethyl acetate (5:1) as eluent gave the α-allenyl methyl ether (\pm) - 3d ($95 \mathrm{mg}, 78 \%$) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=7.33(\mathrm{~m}, 5 \mathrm{H}), 6.94$ and $6.69(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, each 2 H$), 4.95$ and $4.58(\mathrm{~d}, \mathrm{~J}=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, \mathrm{J}=8.5$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=$ $7.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=210.5,169.1,156.3,133.5,129.9$, 128.4, 127.3, 127.2, 121.1, 113.7, 102.5, 81.7, 77.5, 56.1, 55.9,
55.3, 47.2, 9.0; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): \mathrm{V}=2988,1940,1748 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ES}): \mathrm{m} / \mathrm{z}$ (\%): 350 (100) $[M+\mathrm{H}]^{+}, 349$ (15) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3}(349.4): \mathrm{C} 75.62$, $\mathrm{H} 6.63, \mathrm{~N} 4.01$; found $\mathrm{C} 75.49, \mathrm{H}$ 6.67, N 3.98.
α-Allenyl methyl ether (+) - 3e. From $70 \mathrm{mg}(0.17 \mathrm{mmol})$ of α allenic alcohol (+)-1e, and after chromatography of the residue using hexanes/ethyl acetate (4:1) as eluent gave the α-allenyl methyl ether (+)-3e (50 mg, 70\%) as a colorless oil; $[\boldsymbol{\alpha}]_{D}=+41.7$ ($\mathrm{C}=1.7$ in CHCl_{3}) ; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.54(\mathrm{~m}$, $3 H), 7.34$ and $6.85(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}$, each 2 H$), 7.32(\mathrm{~m}, 2 \mathrm{H}), 5.56$ $(\mathrm{m}, ~ 1 \mathrm{H}), 5.17(\mathrm{~m}, 2 \mathrm{H}), 4.97(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ and 3.55 (s, each 3H), 3.25 (s, 3H) , 2.55 (dd, J = $14.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, \mathcal{J}=14.1,7.5 \mathrm{~Hz}$, 1H) ; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=210.0,166.6,156.4,135.6$, 131.8, 131.2, 128.6, 128.3, 127.2, 120.4, 119.6, 113.7, 104.2, 87.9, 81.3, 78.9, 63.9, 56.9, 55.5, 54.3, 35.9; IR ($\left.\mathrm{CHCl}_{3}\right): \mathrm{v}=$ 2995, 1945, $1747 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%) : 406 (100) $\left[M+\mathrm{H}^{+}, 405\right.$ (11) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4}$ (405.5): C 74.05, $\mathrm{H} 6.71, \mathrm{~N} 3.45$; found C 74.19, H 6.67 , N 3.42 .
α-Allenyl methyl ether (+) $\mathbf{- 4 a}$. From $111 \mathrm{mg}(0.27 \mathrm{mmol})$ of $\alpha-$ allenic alcohol (+)-2a, and after chromatography of the residue using hexanes/ethyl acetate (5:1) as eluent gave the α-allenyl methyl ether (+)-4a (70 mg, 62\%) as a colorless solid; m. p. 112$114{ }^{\circ} \mathrm{C} ; \quad[\boldsymbol{\alpha}]_{\mathrm{D}}=+203.4\left(\mathrm{C}=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=7.63$ and $6.85(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, each 2 H$), 7.32(\mathrm{~m}, 5 \mathrm{H})$, $5.18(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=12.7 \mathrm{~Hz}), 4.42(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}$, $J=8.5,6.3 \mathrm{~Hz}), 4.05(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.79$ and $3.70(\mathrm{~s}$, each 3H) , 3.39 (dd, $1 \mathrm{H}, \mathrm{J}=8.7,7.5 \mathrm{~Hz}$), 1.36 and 1.29 (s , each 3 H);

α-Allenyl methyl ether (+)-4b. From $74 \mathrm{mg}(0.21 \mathrm{mmol})$ of $\alpha-$ allenic alcohol (-)-2c, and after chromatography of the residue using hexanes/ethyl acetate (6:1) as eluent gave the α-allenyl methyl ether (+)-4b (46 mg, 62\%) as a colorless oil; $[\boldsymbol{\alpha}]_{\mathrm{D}}=+8.7$ (c $=0.4$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.33(\mathrm{~m}, 5 \mathrm{H})$, $5.70(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=8.8$, $6.3 \mathrm{~Hz}), 4.20$ (ddt, $1 \mathrm{H}, \mathrm{J}=15.6,4.6,1.7 \mathrm{~Hz}), 4.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $8.5,6.3 \mathrm{~Hz}), 3.73$ (ddt, $1 \mathrm{H}, \mathrm{J}=16.6,7.0,1.0 \mathrm{~Hz}), 3.59(\mathrm{~s}, 3 \mathrm{H})$, $3.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 3.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.5,6.6 \mathrm{~Hz}), 1.31$ and 1.29 (s, each 3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=209.1,165.9$, 133.6, 131.5, 128.4, 127.7, 127.6, 117.8, 109.0, 101.3, 90.0, $78.8,76.7,66.8,65.4,55.2,43.2,26.5,25.3 ; \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=$ 2995, 1943, $1748 \mathrm{~cm}^{-1} ; \mathrm{MS}(\mathrm{ES}): m / z(\%): 356(100)[M+\mathrm{H}]^{+}, 355$ (11) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}$ (355.4): C 70.96, $\mathrm{H} 7.09, \mathrm{~N} 3.94$; found $\mathrm{C} 71.11, \mathrm{H} 7.05, \mathrm{~N} 3.97$.

Sodium methoxide promoted reaction of 2 -azetidinone-tethered- $\alpha-$ allenyl ethers 3a-e. General procedure for the preparation of pyrrole derivatives 5a-e. Sodium methoxide (0.6 mmol) was added in portions at $0{ }^{\circ} \mathrm{C}$ to a solution of the appropriate allene- β-lactam 3 (0.15 mmoll) in methanol (3 mL). The reaction was stirred at room temperature under argon atmosphere until complete disappearance of the starting material (TLC) and then water was added (0.5 mL). The
methanol was concentrated under reduced pressure, the aqueous residue was extracted with ethyl acetate (5 x 3 mL), the organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure. Chromatography of the residue on deactivated silica gel eluting with ethyl acetate/hexanes mixtures gave analytically pure compounds 5a-e.

Pyrrole (-)-5a. From $67 \mathrm{mg}(0.18 \mathrm{mmol})$ of allene- β-lactam (+)3a, and after chromatography of the residue using hexanes/ethyl acetate (2:1) as eluent gave the pyrrole (-)-5a (52 mg, 77\%) as a colorless oil; $[\boldsymbol{\alpha}]_{D}=-30.0\left(c=0.4\right.$ in $\left.C_{C H C l}^{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.32(\mathrm{~m}, 6 \mathrm{H}), 7.02(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.52$ (s, 1H), 3.88 and 3.71 (s, each 3H), 3.24 (s, 3H), 2.13 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=170.6,159.4,136.7,130.1$, 129.8, 128.3, 128.0, 127.9, 127.5, 125.3, 121.7, 114.2, 114.1, 109.2, 74.7, 56.7, 55.5, 52.2, 12.0; $\operatorname{IR}\left(\mathrm{CHCl}_{3}\right): v=1742,750 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%): 366 (100) $\left[M+H^{+}, 365\right.$ (5) $[M]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}$ (365.4): C 72.31, H 6.34, N 3.83 ; found C 72.17, H 6.30, N 3.85 .

Pyrrole (-)-5b. From $80 \mathrm{mg}(0.18 \mathrm{mmol})$ of allene- β-lactam (+)3b, and after chromatography of the residue using hexanes/ethyl acetate (20:1) as eluent gave the pyrrole (-)-5b (40 mg, 50\%) as a colorless oil; $[\boldsymbol{\alpha}]_{\mathrm{D}}=-28.5\left(\mathrm{C}=0.4 \mathrm{in} \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.38(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{~m}, 4 \mathrm{H}), 6.59$ $(s, 1 H), 5.32(s, 1 H), 3.82$ and $3.74(s$, each $3 H), 2.16$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=169.8,159.4,131.5,129.9$, 129.8, 129.6, 129.5, 129.4, 128.8, 128.3, 128.2, 127.9, 126.4, 125.5, 121.7, 115.6, 115.4, 114.2, 109.8, 71.7, 55.5, 52.5, 12.1; IR $\left(\mathrm{CHCl}_{3}\right): v=1745,745 \mathrm{~cm}^{-1}$; $\mathrm{MS}(\mathrm{ES}): \mathrm{m} / \mathrm{z}$ (\%): 428 (100) $[M+$
$\mathrm{H}^{+}, 427$ (11) $\mathrm{[M]}^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{4}$ (427.5): C 75.86, H 5.89, N 3.28; found C 75.98, H 5.92, N 3.25.

Pyrrole (-)-5c. From $60 \mathrm{mg}(0.20 \mathrm{mmol})$ of allene- β-lactam (-)3c, and after chromatography of the residue using hexanes/ethyl acetate (6:1) as eluent gave the pyrrole (-)-5c (30 mg, 50\%) as a colorless oil; $[\boldsymbol{\alpha}]_{\mathrm{D}}=-10.6$ (c = 1.5 in acetone); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone-d $\left.{ }_{6}, 25^{\circ} \mathrm{C}\right): \delta=7.36(\mathrm{~m}, 4 \mathrm{H}), 7.19(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $5.97(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.4,1.6 \mathrm{~Hz}), 4.96(\mathrm{~s}, 1 \mathrm{H}), 4.85$ (dd, 1H, J = 17.2, 1.6 Hz$), 4.68(\mathrm{~m}, 2 \mathrm{H}), 3.73$ and 3.37 (s, each 3H), $2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}\right.$, acetone-d6, $\left.25^{\circ} \mathrm{C}\right): \delta=170.5$, 137.6, 135.2, 131.7, 128.7, 128.1, 127.6, 125.4, 121.5, 115.1, 109.8, 75.8, 56.3, 51.7, 46.5, 10.5; IR $\left(\mathrm{CHCl}_{3}\right): v=1747,740 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 299 (18) $\left[\mathrm{M}^{+}\right.$, 240 (100) [M-59] ${ }^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ (299.2): C 72.22, H 7.07, N 4.68 ; found C 72.36, H 7.03, N 4.71.

Pyrrole (\pm)-5d. From $28 \mathrm{mg}(0.08 \mathrm{mmol})$ of allene- β-lactam (\pm)3d, and after chromatography of the residue using hexanes/ethyl acetate (9:2) as eluent gave the pyrrole (土)-5d (15 mg, 54\%) as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2 \mathrm{C}^{\circ} \mathrm{C}$) : $\delta=7.45$ and 7.37 (d, each $2 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.20(\mathrm{~m}, 3 \mathrm{H}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}), 6.31$ $(s, 1 H), 3.88$ and $3.58(s, e a c h 3 H), 3.50(q, 1 H, J=7.2 \mathrm{~Hz})$, $2.12(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25\right.$ $\left.{ }^{\circ} \mathrm{C}\right): \delta=174.4,159.3,137.0,132.0,130.7,130.2,129.5,128.3$, 127.7, 126.3, 125.1, 121.0, 114.3, 114.2, 105.7, 55.5, 51.9, 37.5, 17.8, 12.0; IR (CHCl_{3}): $v=1738,741 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI): m/z (\%): 349 (35) $[M]^{+}, 290(100) \quad[M-59]^{+} ; ~ e l e m e n t a l ~ a n a l y s i s ~ c a l c d ~(\%) ~ f o r ~$ $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4}(349.4): \mathrm{C} 75.62, \mathrm{H} 6.63, \mathrm{~N} 4.01$; found $\mathrm{C} 75.49, \mathrm{H} 6.67, \mathrm{~N}$ 4.04.

Pyrrole (-)-5e. From $25 \mathrm{mg}(0.06 \mathrm{mmol})$ of allene- β-lactam (+)3e, and after chromatography of the residue using hexanes/ethyl acetate (2:1) as eluent gave the pyrrole (-)-5e (13 mg, 53\%) as a colorless oil; $[\boldsymbol{\alpha}]_{\mathrm{D}}=-42.8$ (c = 0.6 in acetone); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone-d $\left.{ }_{6}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.48$ and $7.38(\mathrm{dd}$, each $2 \mathrm{H}, \mathrm{J}=8.0,2.0$ $\mathrm{Hz}), 7.22$ and $7.00(\mathrm{~m}, 2 \mathrm{H}), 6.77(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~m}$, 1H), 5.03 (m, 2H), 3.86 and $3.39(\mathrm{~s}$, each 3 H$), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.78$ $(\mathrm{m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}\right.$, acetone-d6, $\left.25^{\circ} \mathrm{C}\right): \delta=$ $171.0,160.0,137.5,133.0,131.7,131.2,130.9,130.7,130.2$, 128.7, 127.9, 125.4, 120.5, 117.5, 115.0, 114.0, 110.8, 80.3, 55.3, 51.3, 49.5, 38.3, 11.6; IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{v}=1748,750 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 405 (14) $[M]^{+}, 362(100)[M-43]^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{4}$ (405.5): C 74.05, $\mathrm{H} 6.71, \mathrm{~N} 3.45$; found C 74.20, H 6.67, N 3.42.

Sodium methoxide promoted reaction of 2 -azetidinone-tethered- α -

 allenyl ethers $4 \mathrm{a}-\mathrm{b}$. General procedure for the preparation of pyrrole derivatives $6 \mathrm{a}-\mathrm{b}$. Sodium methoxide (0.6 mmol) was added in portions at $0{ }^{\circ} \mathrm{C}$ to a solution of the appropriate allene- β-lactam 4 (0.15 mmoll) in methanol (3 mL). The reaction was stirred at reflux temperature under argon atmosphere until complete disappearance of the starting material (TLC). The mixture was allowed to cool to room temperature and then water was added (0.5 $\mathrm{mL})$. The methanol was concentrated under reduced pressure, the aqueous residue was extracted with ethyl acetate (5 x 3 mL), the organic layer was dried over MgSO_{4}, and the solvent was removed under reduced pressure. Chromatography of the residue on deactivated silica gel eluting with ethyl acetate/hexanes mixtures gave analytically pure compounds 6a-b.Pyrrole (+)-6a. From $53 \mathrm{mg}(0.12 \mathrm{mmol})$ of allene- β-lactam (+)4a, and after chromatography of the residue using hexanes/ethyl acetate (3:1) as eluent gave the pyrrole (+)-6a (26 mg, 49\%) as a pale yellow oil; $[\boldsymbol{\alpha}]_{\mathrm{D}}=+98.8$ ($\mathrm{C}=1.0$ in CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right): \delta=7.29(\mathrm{~m}, 7 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.66$ (dd, J = 8.9, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (t, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ and 3.60 (s, each 3H), 3.83 (m, 1H), 1.82 (s, 3H), 1.29 and 1.03 (s, each 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$) : $\delta=166.6,159.6,136.2,131.6$, 131.5, 130.5, 130.4, 129.4, 128.2, 128.1, 128.0, 126.5, 114.8, 114.2, 109.2, 71.1, 68.8, 55.9, 51.4, 26.0, 25.6, 11.5; IR (CHCl_{3}): $v=1704 \mathrm{~cm}^{-1}$; MS (ES): m/z (\%): 422 (100) [M+H] ${ }^{+} 421$ (17) [M] ${ }^{+}$; elemental analysis calcd (\%) for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{5}$ (421.5): C 71.24, H 6.46, N 3.32; found C 71.11, H 6.51, N 3.36.

Pyrrole (-)-6b. From $38 \mathrm{mg}(0.10 \mathrm{mmol})$ of allene- β-lactam (+)4b, and after chromatography of the residue using hexanes/ethyl acetate (2:1) as eluent gave the pyrrole (-)-6b (20 mg, 53\%) as a colorless oil; $[\alpha]_{D}=-5.9$ (c = 1.0 in acetone); ${ }^{1} \mathrm{H}$ NMR (300 MHz , acetone-d $\mathrm{d}_{6} 25^{\circ} \mathrm{C}$): $\delta=7.25$ (m, 5H), 6.11 (t, J $\left.=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.04(\mathrm{~m}, ~ 1 \mathrm{H}), 5.18(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{~m}, ~ 3 \mathrm{H}), 4.23$ and 3.92 (t, J = 7.8 Hz , each 1H), $2.84(\mathrm{~s}, 3 \mathrm{H}), 1.57$ and 1.38 (s, each 3 H$)$; ${ }^{13} \mathrm{C}$ NMR (75 MHz, acetone-d6, $25^{\circ} \mathrm{C}$): $\delta=165.8,136.7,135.4,131.5,130.6$, 129.4, 127.7, 126.2, 122.8, 115.6, 109.3, 70.0, 68.2, 50.2, 47.5, 25.8, 23.7, 9.7; IR (CHCl_{3}) : $v=1698 \mathrm{~cm}^{-1}$; MS (EI): m/z (\%): 355 (9) $[M]^{+}, 269$ (100) $[M-86]^{+} ; ~ e l e m e n t a l ~ a n a l y s i s ~ c a l c d ~(\%) ~ f o r ~$ $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4}(355.4): \mathrm{C} 70.96, \mathrm{H} 7.09, \mathrm{~N} 3.94 ;$ found $\mathrm{C} 71.09, \mathrm{H} 7.04, \mathrm{~N}$ 3.92 .

