Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Supplementary Information

Nanoassembly of Biocompatible Microcapsules for Urease Encapsulation and Their Use as Biomimetic Reactors

Aimin Yu^a, Ian Gentle^{a,*}, Gaoqing Lu^{a,*} and Frank Caruso^b

ARC Centre for Functional Nanomaterials, The University of Queensland, 4072, Australia and Centre for Nanoscience and Nanotechnology, Department of Chemical and Biomolecular Engineering, The University of Melbourne, 3010, Australia.

Materials. Urease ($M_W \sim 48,000$), poly(l-lysine) hydrobromide (PLL, M_W 30,000 – 70,000 g/mol), Poly(l-glutamic acid) (PGA, M_W 50,000 – 100,000 g/mol), urea, CaCl₂, 2-(N-morpholino)ethanesulfonic acid (MES), hydrofluoric acid (HF), ammonium fluoride (NH₄F), sodium metasilicate (Na₂SiO₃), tetraethyl orthosilicate (TEOS, 98%), di(methylsulfoxide) (DMSO) were obtained from Sigma-Aldrich and used as received. Bimodal mesoporous spheres (MS) of diameter approximately 2-4 µm, total surface area 630 m²g⁻¹ and pore volume 1.72 ml g⁻¹, were synthesized as via the literature⁵. 1 mg mL⁻¹ PLL and PGA solutions were prepared in 0.05 M pH 5.5 MES buffer solution. The solution used for dissolving silica core is a mixture of 2 M HF and 8 M NH₄F at a pH ~ 5. The water used in all experiments was prepared in a Millipore Milli-Q purification system and had a resistivity higher than 18.2 MΩ cm.

Enzyme loading and encapsulation. Approximately 5 mg of the MS particles were incubated with $1.5 \text{ mL } 2 \text{ mg.mL}^{-1}$ of urease solution (in pH 5.5 MES buffer) at 5 °C for 3d with initially sonication for 5 minutes to disperse the silica particles. After

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

adsorbing, the enzyme-loaded particles were separated and washed with chilled (5 °C) MES buffer twice via centrifugation (500 *g* for 5 min). The urease amount that retained in the particles was measured by Standard Micro BCATM Protein Assay kit (Pierce, Product No. 23209). The coating of PLL and PGA on enzyme adsorbed MS particles was then performed by adsorbing in 1 mg mL⁻¹ PLL or PGA solutions (fleshly prepared in 0.05 M pH 5.5 MES buffer, 5 °C) for 10 min, with occasional shaking, and excess polymers were separated by three centrifugation (500g for 5 min)/redispersion cycles using pH 5.5 MES buffer solutions. These processes were repeated until three bilayers (PLL/PLGA) were coated.

Characterization. Scanning Electron Microscopy (SEM) samples were prepared by placing a drop of diluted sample suspension (dispersed in water) onto a cleaned microscopy glass. After coating with a thin layer of platinum, SEM images were recorded with a JEOL JSM 6400F instrument at an acceleration voltage of 10 kV. A Perkin Elmer FTIR spectrometer 2000 was performed for FTIR measurement. XRD measurements were carried out at a MiniFlex XRD instrument (Rigaku Co.).

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Figure S1. SEM images of urease-loaded (PLL/PGA)₃ capsules after carbonate precipitation in 0.5 M urea and 1M CaCl₂ solution for 24 h (left) and calcium carbonate precipitates obtained in a solution containing 0.5 M urea, 1 M CaCl₂ and 30 mg.mL⁻¹ urease (right) without PE capsules.

Figure S2. XRD patterns of calcium carbonate precipitates obtained in a solution containing 0.5 M urea, 1 M CaCl₂ and urease at a concentration of 0.3 mg.mL⁻¹ (a) and 30 mg.mL⁻¹ (b). Samples were separated from the reaction solution and washed with water by centrifugation and dried overnight under vacuum. Peaks coded as C and V, respectively, are characteristic of calcite and vaterite.