Polynuclear cyanoruthenate chromophores based on hexaazatriphenylene containing up to twelve cyanides: photophysical and structural properties

Juan-Manuel Herrera, Michael D. Ward, Harry Adams, Simon J. A. Pope and Stephen Faulkner

Supporting information

Table S1: Analytical, ¹H-NMR and IR spectroscopic data for the Ru_x-HAT complexes

	Elem analysis		Principal IR spectral		
Complex	(%C, %H,	$I \Pi$ -NMR ($D_2 O$)	peaks		
	%N) ^a	ð(ppm)	$(\text{cm}^{-1})^{\text{c}}$		
Na ₂ [Ru(C ₁₂ N ₆ H ₆)(CN) ₄].4H ₂ O	33.9 (34.4)	9.18 (2H, s)			
	2.3 (2.5)	9.25 (2H, d, J 2.75 Hz)	3431, 2105, 2073,		
	25.0 (25.1)	9.74 (2H, d, J 2.75 Hz)	2062, 1629, 1384		
		7.55 (60H, multiplet)	3435, 2099, 2071,		
$PPN_2[Ru(C_{12}N_6H_6)(CN)_4].5H_2O^b$	65.6 (65.8)	9.02 (2H, d, J 2.85Hz)	1639, 1438, 1289,		
	4.5 (4.7) 10.3 (10.5)	9.21 (2H, s)	1265, 1115, 724, 693,		
		10.00 (2H, d, J 2.9Hz)	548, 534		
Na4[Ru2(C12N6H6)(CN)8].8H2O	26.2 (27.2)	9.33 (2H, d, J 2.75Hz)	2426 2000 2068		
	2.4 (2.51)	9.64 (2H, s)	5450, 2099, 2008,		
	21.9 (22.2)	9.77 (2H, d, J 2.75Hz)	2057, 1632, 1387		
PPN ₄ [Ru ₂ (C ₁₂ N ₆ H ₆)(CN) ₈].14H ₂ O ^b	61 6 (61 5)	7.55 (120H, multiplet)	3435, 2097, 2069,		
	4.0(04.3)	8.90 (2H, d, J 2.75Hz)	1636, 1437, 1262,		
	4.8 (5.1) 8.22 (8.26)	9.60 (2H, s)	1115, 724, 694, 549,		
		9.93 (2H, d, J 2.75Hz)	533		
Na ₆ [Ru ₃ (C ₁₂ N ₆ H ₆)(CN) ₁₂].12H ₂ O	23.0 (23.94)		3436 2102 2070		
	2.4 (2.51)	9.66 (6H,s)	1620 1200		
	20.0 (20.94)		1050, 1590		
PPN ₆ [Ru ₃ (C ₁₂ N ₆ H ₆)(CN) ₁₂].10H ₂ O ^b	67.6 (67.6)		3434, 2093, 2068,		
		7.55 (180H,multiplet)	1634, 1437, 1263,		
	4.9 (4.8)	9.54 (6H, s)	1114, 723, 692, 548,		
	8.1 (7.9)		534		
a 1 1 1 1 c ·	. 1		•		

calculated figures are in parentheses.

^b PPN salts are hygroscopic, elemental analysis have been done on samples which had attained a final steady weight in air

^c PPN bands are in red.

Sodium salts					
		H ₂ O	CH ₃ OH		
Compounds	λ	ε x 10 ⁻³	λ	ε x 10 ⁻³	
	(nm)	$(M^{-1} cm^{-1})$	(nm)	$(M^{-1} cm^{-1})$	
Na ₂ [Ru(C ₁₂ N ₆ H ₆)(CN) ₄].4H ₂ O	443	8.2	482	8.8	
	478	14.1	520	15.9	
INa4[KU2(U12IN6H6)(UN)8].8H2U	516 (sh)	13.7	571 (sh)	13.9	
Na ₆ [Ru ₃ (C ₁₂ N ₆ H ₆)(CN) ₁₂].12H ₂ O	524	28.0	575	28.3	

Table S2: UV-vis absorption spectra of Ru_x-HAT derivates

PPN salts						
	CH ₃ CN		DCM		DMF	
Compounds	λ	ε x 10 ⁻³	λ	ε x 10 ⁻³	λ	ε x 10 ⁻³
	(nm)	$(M^{-1} cm^{-1})$	(nm)	$(M^{-1} cm^{-1})$	(nm)	$(M^{-1} cm^{-1})$
PPN ₂ [Ru(C ₁₂ N ₆ H ₆)(CN) ₄].5H ₂ O	527	11.7	523	11.4	546	11.3
	578(sh)	8.5	579(sh)	8.1	618(sh)	7.1
PPN ₄ [Ru ₂ (C ₁₂ N ₆ H ₆)(CN) ₈].14H ₂ O	576	21.1	572	22.2	596	22.8
	657(sh)	14.1	644(sh)	14.2	692	12.6
	780sh	5.7	744(sh)	6.1	805	6.4
PPN ₆ [Ru ₃ (C ₁₂ N ₆ H ₆)(CN) ₁₂].10H ₂ O	602sh	27.2	593sh	26.4	610sh	26.3
	666	34.8	632	32.6	692	36.4
	739sh	21.1	705sh	21.1	762sh	20.95

Table S3: Bond lengths in the crystal structure of $Nd_2[\{Ru(CN)_4\}_3(\mu^3-HAT) \cdot 23H_2O\}$

Nd(1)-O(55')	2.425(17)
Nd(1)-O(51)	2.482(8)
Nd(1)-O(54)	2.496(6)
Nd(1)-N(34)#1	2.515(8)
Nd(1)-O(55)	2.518(14)
Nd(1)-N(46)#2	2.525(9)
Nd(1)-O(53)	2.528(7)
Nd(1)-N(44)	2.555(7)
Nd(1)-N(48)#3	2.571(9)
Nd(1)-O(52)	2.59(3)
Nd(1)-O(52')	2.62(2)
Ru(2)-C(33)#4	1.970(9)
Ru(2)-C(33)	1.970(9)
Ru(2)-C(35)	2.022(15)
Ru(2)-C(31)	2.032(17)
Ru(2)-N(15)#4	2.104(7)
Ru(2)-N(15)	2.104(7)
Ru(3)-C(45)	1.975(10)
Ru(3)-C(43)	1.978(9)
Ru(3)-C(47)	1.998(10)
Ru(3)-C(41)	2.040(10)
Ru(3)-N(22)	2.111(8)
Ru(3)-N(12)	2.115(7)

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z-1 #2 -x+2,-y+1,-z+1 #3 x+1,y,z

#4 x,-y+1/2,z #5 x-1,y,z+1 #6 x-1,y,z #7 -x+2,-y+1,-z+2