Hemi-aminals as substrates for sulfur ylides+ Direct asymmetric syntheses of functionalised pyrrolidines and piperidines

Christoforos G. Kokotos, and Varinder K. Aggarwal*
School of Chemistry, Bristol University, Cantock's Close, Bristol, UK BS8 1TS.
E-mail: v.aggarwal@bristol.ac.uk; Fax: +44 (0)117929 8611; Tel: +44 (0)117 9546315

Supplementary Information

General Methods

Flash chromatography was performed on silica gel (SiO_{2}, Merck Kiesegel 60, 230-400 mesh). TLC was performed on aluminium backed silica plates $\left(60 \mathrm{~F}_{254}, 0.2 \mathrm{~mm}\right)$ which were visualised using: UV fluorescence (254 and 366 nm), phosphomolybdic acid/ Δ, anisaldehyde $/ \Delta$. Melting points were determined on a Kofler hot stage. Infrared spectra were recorded on a Perkin-Elmer Spectrum One FT-IR spectrometer, only selected absorbencies $\left(v_{\max }\right)$ are reported. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 270 or 400 MHz on Jeol Delta GX/270 or Jeol Delta GX/400 instruments, respectively. Chemical shifts $\left(\delta_{\mathrm{H}}\right)$ are quoted in parts per million (ppm), referenced to TMS, J values are given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 67 or 101 MHz on Jeol Delta GX/270 or Jeol Delta GX/400 instruments, respectively. Chemical shifts $\left(\delta_{\mathrm{C}}\right)$ are quoted in parts per million (ppm), referenced to the appropriate residual solvent. Degenerate peaks are prefixed by the number of carbons. Low resolution mass spectra (m / z) were recorded on a Micromass Analytical Autospec spectrometer, with only molecular ions $\left(\mathrm{M}^{+}\right.$or $\left.\mathrm{MH}^{+}\right)$and major peaks being reported with intensities quoted as percentages of the base peak. High-resolution mass spectra were recorded on a Micromass Analytical Autospec Spectrometer. All chemicals were purchased from Aldrich, Fluka, Lancaster or Strem and used as received unless otherwise mentioned. Anhydrous THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and acetonitrile were obtained from a purification column composed of activated alumina (A-2). ${ }^{1}$ Other anhydrous solvents were used as obtained from Aldrich. All reactions were performed in dry glassware under an inert atmosphere of either argon or nitrogen. Enantioselectivities were measured by chiral HPLC utilising Chiralcel OD, OJ or ODH columns eluting with different ratios of hexane and 2-propanol.

Experimental procedures

1-[(4-Methylphenyl)sulfonyl]pyrrolidine ${ }^{2}$

To a solution of pyrrolidine ($10.0 \mathrm{~g}, 0.141 \mathrm{~mol}$), triethylamine $(33.77 \mathrm{~g}, 0.242 \mathrm{mmol})$ in chloroform (20 mL) at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added a solution of p-toluenesulfonyl chloride ($29.55 \mathrm{~g}, 0.155 \mathrm{mmol}$) in chloroform (25 mL) dropwise over 10 minutes. After 1 h the reaction mixture was warmed to room temperature and stirred for a further 18 h and quenched with aqueous $\mathrm{NaHCO}_{3}(5 \%, 50 \mathrm{~mL})$. The reaction mixture was extracted with EtOAc (80 mL). The organic layer was washed with aqueous citric acid ($5 \%, 2 \times 40 \mathrm{~mL}$), $\mathrm{H}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(5 \%, 2 \times 40 \mathrm{~mL})$ and brine $(1 \times 40 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuum to give the product as a white solid ${ }^{2}$ ($30.5 \mathrm{~g}, 96 \%$); mp $123{ }^{\circ} \mathrm{C}\left[\mathrm{lit}\right.$., $\left.{ }^{2} 122-124^{\circ} \mathrm{C}\right]$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71(2 \mathrm{H}$, d, J $8.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.32(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 3.23\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.74$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.2,134.2,129.6,127.6,47.9,25.3,21.5$.

2-Methoxy-1-[(4-methylphenyl)sulfonyl]pyrrolidine ${ }^{3}$

This experiment is based on an electrochemical oxidation described by Ban ${ }^{4}$. To a solution of 1-[(4-Methylphenyl)sulfonyl]pyrrolidine ($5.00 \mathrm{~g}, 22.00 \mathrm{mmol}$) in anhydrous methanol (25 mL) and acetonitrile (25 mL) was added tetraethylammonium p toluenesulfonate $(0.19 \mathrm{~g}, 0.63 \mathrm{mmol})$ and was electrochemically oxidised $(10 \mathrm{~V}, 0.1 \mathrm{~A})$ using carbon electrodes for 8.5 h at room temperature. The reaction mixture was then concentrated in vacuo and the residue was purified by flash chromatography, eluting with 1:4 EtOAc : pet.ether followed by 1:3 EtOAc : pet.ether to give the product as a colourless oil ${ }^{3}(4.89 \mathrm{~g}$, $87 \%)$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.71(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.29(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 5.10$ $(1 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}, \mathrm{NCH}), 3.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.40(1 \mathrm{H}, \mathrm{td}, J 10.0$ and $2.5 \mathrm{~Hz}, \mathrm{NCHH}), 3.13$ $(1 \mathrm{H}, \mathrm{td}, J 10.0$ and $7.5 \mathrm{~Hz}, \mathrm{NCHH}), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.00(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 1.85(1 \mathrm{H}, \mathrm{ddd}, J$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
$13.0,7.0$ and $1.5 \mathrm{~Hz}, \mathrm{C} H \mathrm{H}), 1.74(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 1.37(1 \mathrm{H}, \mathrm{tdd}, J 13.0,13.0,8.0$ and 5.0 Hz , $\mathrm{C} H \mathrm{H}) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.5,136.1,129.7,127.4,91.7,55.3,47.3,32.7,23.2,21.5$.

1-[(4-Methylphenyl)sulfonyl]-2-pyrrolidinol (3) ${ }^{3}$

3

To a solution of 2-methoxy-1-[(4-methylphenyl)sulfonyl]pyrrolidine (1.0 g, 3.92 mmol) in deionised water (6 mL) and acetonitrile (8 mL) was added pyridinium p toluenesulfonate $(0.1 \mathrm{~g}, 0.39 \mathrm{mmol})$ at room temperature under nitrogen. The reaction mixture was then stirred for 18 h . The reaction mixture was then concentrated in vacuo and the residue partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was separated and the aqueous layer was further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(1 \times 20 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The organic layers were then concentrated in vacuo and the residue purified by flash chromatography, eluting with $1: 4$ EtOAc : pet. ether followed by 3:7 EtOAc : pet. ether to give the product as a white solid ${ }^{3}$ ($0.73 \mathrm{~g}, 77 \%$); mp 59-61 ${ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.32(2 \mathrm{H}, \mathrm{d}$, $J 8.5 \mathrm{~Hz}, \mathrm{ArH}), 5.44(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHOH}), 3.56(1 \mathrm{H}, \mathrm{ddd}, J 10.0,8.0$ and $2.5 \mathrm{~Hz}, \mathrm{NCHH}), 3.16$ $(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and $1.0 \mathrm{~Hz}, \mathrm{OH}), 3.06(1 \mathrm{H}, \mathrm{td}, J 10.0$ and $6.5 \mathrm{~Hz}, \mathrm{NC} H \mathrm{H}), 2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 2.16-2.04 ($1 \mathrm{H}, \mathrm{m}$), 1.95-1.87 ($1 \mathrm{H}, \mathrm{m}$), 1.81-1.67 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 143.7, 136.0, 127.6, 127.2, 84.0, 47.6, 33.9, 23.0, 21.5.

tert-Butyl- N-(4-hydroxybutyl) carbamate ${ }^{5}$

To a solution of 4-amino-butanol ($0.5 \mathrm{~g}, 5.6 \mathrm{mmol}$), triethylamine ($3.9 \mathrm{~mL}, 28.0$ $\mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$ was added Boc anhydride ($1.8 \mathrm{~g}, 8.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Once the reaction was judged complete by TLC, the solvent was removed and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ were added. The layers were separated and the organic layer was consecutively washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}), \mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, water $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
solvents were removed in vauo to give the product as a colourless oil ${ }^{5}$ which was used without further purification $(0.76 \mathrm{~g}, 72 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 5.09(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.69$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.40\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.91\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.45-1.31(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.22\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.2,78.5,61.7,40.2,29.6,28.5$, 28.3.

tert-Butyl 2-hydroxy-1-pyrrolidinecarboxylate ${ }^{6}$

To a solution of oxalyl chloride ($0.25 \mathrm{ml}, 2.86 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ anhydrous DMSO ($0.37 \mathrm{ml}, 5.20 \mathrm{mmol}$) was then added drop-wise over a period of 5 min and the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min . A solution of tert-butyl- $\mathrm{N}-(4-$ hydroxybutyl) carbamate ($0.50 \mathrm{~g}, 2.60 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added drop-wise over 5 \min and a pale yellow precipitate was formed. The reaction mixture was then warmed until the precipitate dissolved, cooled to $-78{ }^{\circ} \mathrm{C}$ and stirred for 10 min . Triethylamine $(1.81 \mathrm{ml}$, 13.00 mmol) was then added, and the reaction was warmed to room temperature. $\mathrm{H}_{2} \mathrm{O}$ (20 mL) was then added and the organic layer was separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The resulting product was purified by column chromatography, eluting with 7:3 pet. ether : EtOAc to give the product as a colourless oil ${ }^{6}(0.38 \mathrm{~g}, 71 \%)$; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 5.48-5.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCHOH}$), $3.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.58-3.42(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCH} H), 3.35-3.12(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 2.16-1.72\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.50\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}$ (100.5 MHz, CDCl_{3}) 154.9, 81.7, 79.9, 45.9, 32.7, 28.5, 21.8.

5-(Toluene-4-sulfonylamino)-pentanoic acid ${ }^{7}$

To a solution of 5 -aminovaleric acid ($14.0 \mathrm{~g}, 0.12 \mathrm{~mol}$) in water $(150 \mathrm{~mL})$, was added solid $\mathrm{NaOH}(10.0 \mathrm{~g}, 0.28 \mathrm{~mol})$ followed by tosyl chloride ($23.0 \mathrm{~g}, 0.12 \mathrm{~mol}$) into portions over 15 minutes. The reaction mixture was then heated to $90{ }^{\circ} \mathrm{C}$ and stirred for 3 h . After

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006
cooling to room temperature, the pH was adjusted to 5 with $\mathrm{HCl}(6 \mathrm{~N})$. The resulting precipitate was then filtered, washed with water, and dried to afford the product as a white solid ${ }^{6}$ (30.5 g, 94\%); mp 91-93 ${ }^{\circ} \mathrm{C}\left[\right.$ lit., $\left.{ }^{7} 95{ }^{\circ} \mathrm{C}\right] ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.74(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}$, ArH), $7.21(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 4.95(1 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{NH}), 2.96\left(2 \mathrm{H}, \mathrm{q}, J 6.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right)$, $2.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.34\left(2 \mathrm{H}, \mathrm{t}, J 7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 1.66-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.57-1.50(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$).

N-(5-Hydroxy-pentyl)-4-methyl-benzenesulfonamide ${ }^{8}$

To a solution of 5-(toluene-4-sulfonylamino)-pentanoic acid ($0.70 \mathrm{~g}, 2.6 \mathrm{mmol}$) in THF (15 mL) at $-10{ }^{\circ} \mathrm{C}$ was added triethylamine ($0.36 \mathrm{~mL}, 2.6 \mathrm{mmol}$) followed by ethyl chloroformate $(0.25 \mathrm{~mL}, 2.6 \mathrm{mmol}) .{ }^{8}$ After $10 \mathrm{~min}, \mathrm{NaBH}_{4}(294 \mathrm{mg}, 7.8 \mathrm{mmol})$ was added in one portion followed by $\mathrm{MeOH}(30 \mathrm{~mL})$ dropwise to the reaction mixture over 10 min at $0^{\circ} \mathrm{C}$. The solution was stirred for additional 10 min and then neutralised with $\mathrm{HCl}(1 \mathrm{~N})$. The solvent was evaporated and the product was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$. The organic layer was washed consecutively with $\mathrm{HCl}(1 \mathrm{~N}, 20 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL}), \mathrm{NaHCO}_{3}(5 \%, 20 \mathrm{~mL})$, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was evaporated to yield the product as a yellow oil ${ }^{8}(0.45 \mathrm{~g}, 68 \%)$: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.80(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH})$, $7.35(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 5.91(1 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{NH}), 3.59\left(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.10$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.73\left(2 \mathrm{H}, \mathrm{q}, J 6.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56-1.47\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right)$, 1.43-1.34 (2H, m, CH_{2}); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 143.1, 137.1, 129.6, 129.6, 62.0, 43.0, 31.9, 29.1, 22.7, 21.4 .

1-(Toluene-4-sulfonyl)-piperidin-2-ol

To a solution of oxalyl chloride $(0.11 \mathrm{ml}, 1.16 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added anhydrous DMSO ($0.08 \mathrm{ml}, 2.10 \mathrm{mmol}$) drop-wise over 5 min . The reaction mixture was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . N -(5-Hydroxy-pentyl)-4-methyl-

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006
benzenesulfonamide $(0.27 \mathrm{~g}, 1.05 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ was then added dropwise over 5 min and a pale yellow precipitate then formed. The reaction mixture was warmed until the precipitate dissolved, then cooled to $-78{ }^{\circ} \mathrm{C}$ and stirred for 10 min . Triethylamine $(0.77 \mathrm{ml}, 5.50 \mathrm{mmol})$ was added and the reaction was warmed to room temperature. $\mathrm{H}_{2} \mathrm{O}$ was added and the organic layer was removed. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated in vacuo. The crude product was purified by column chromatography, eluting with $6: 4$ pet. ether : EtOAc to give product as an oil $(0.19 \mathrm{~g}, 72 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.30$ ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $5.56(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.57(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.2,4.5$ and $2.5 \mathrm{~Hz}, \mathrm{NCHH})$, $3.11(1 \mathrm{H}, \mathrm{td}, J 12.2$ and $2.9 \mathrm{~Hz}, \mathrm{NCHH}), 2.54(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and $1.5 \mathrm{~Hz}, \mathrm{OH}), 2.44(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right)$, 1.79-1.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 1.66-1.46 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 143.6, 137.0, 129.8, 127.3, 77.1, 40.1, 31.4, 24.9, 21.6, 17.3.

N-Benzyloxycarbonyl-5-aminopentan-1-ol ${ }^{10}$

To a solution of 5-aminopentan-1-ol ($4.00 \mathrm{~g}, 39.0 \mathrm{mmol}$) in aqueous $\mathrm{NaOH}(1 \mathrm{~N}, 43.0$ mmol) at $0{ }^{\circ} \mathrm{C}$ was added benzylchloroformate $(6.14 \mathrm{ml}, 43.0 \mathrm{mmol})$ drop-wise. The reaction mixture was allowed to warm to room temperature and stirred for 16 h . After the solvents were removed in vacuo, the crude product was recrystallised from EtOAc and pet. Ether ${ }^{10}$ ($7.59 \mathrm{~g}, 82 \%$); mp $43-44{ }^{\circ} \mathrm{C}$ [Lit., ${ }^{9} \mathrm{mp} 45-46{ }^{\circ} \mathrm{C}$ (Pet. ether, EtOAc)]; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.39-7.26 (5H, m, ArH), $5.07\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.78(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.58(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}$, $\left.\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.16(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCH})_{2}\right), 2.48(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.58-1.36\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$.

N-Benzyloxycarbonyl-2-hydroxypiperidine ${ }^{10}$

To a solution of oxalyl chloride $(0.61 \mathrm{ml}, 6.95 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ at $-78{ }^{\circ} \mathrm{C}$ was added anhydrous DMSO $(0.90 \mathrm{ml}, 12.60 \mathrm{mmol})$ drop-wise over 5 min . The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min . N-Benzyloxycarbonyl-5-aminopentan-1-ol (1.50 g, 6.32

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006
$\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{ml})$ was added drop-wise over 5 min and a pale yellow precipitate formed. The reaction mixture was warmed until the precipitate dissolved and then cooled to $-78^{\circ} \mathrm{C}$ and stirred for 10 min . Triethylamine ($4.41 \mathrm{ml}, 31.60 \mathrm{mmol}$) was added, the reaction was warmed to room temperature and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude product was purified by column chromatography, eluting with $6: 4$ pet. ether : EtOAc to give the product as an oil ${ }^{10}(1.04 \mathrm{~g}, 70 \%) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.28-7.17(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.70(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH})$, $5.03\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.81(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{CHOH}), 3.10\left(2 \mathrm{H}, \mathrm{t}, J 10.5 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 1.79-1.30(6 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta_{\mathrm{C}}\left(101 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 154, .3,136.4,128.6,127.8,127.7,74.5,62.1,45.9$, 31.8, 24.5, 18.3.

Reaction of hemiaminal 3 with achiral sulfonium salt 4

To a solution of 1-[(4-methylphenyl)sulfonyl]-2-pyrrolidinol $3(0.15 \mathrm{~g}, 0.62 \mathrm{mmol})$ and 1-benzyl-tetrahydro-thiophenium tetrafluoroborate $4(0.18 \mathrm{~g}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at 0 ${ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.41 \mathrm{~mL}, 1.24 \mathrm{mmol}$). The reaction mixture was then stirred for 3 hours at $0{ }^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20$ $\mathrm{mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with $3: 2$ pet. ether : EtOAc to give:
4-methyl- N-[3-(3-phenyl-oxiranyl)-propyl]-benzenesulfonamide (6) as white solid (111 mg, 54%); R_{f} (EtOAc : pet. ether, 4:6) 0.50; mp $74-75^{\circ} \mathrm{C}$; IR (film) $3276,3058,1496,1328$, $1157,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.35-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.19(2 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.5 \mathrm{~Hz}, \mathrm{ArH}), 5.06(1 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{NH}), 3.57(1 \mathrm{H}, \mathrm{d}, J 1.9 \mathrm{~Hz}$, OCHPh), $3.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.88(1 \mathrm{H}, \mathrm{ddd}, J 6.3,4.4$ and $1.9 \mathrm{~Hz}, \mathrm{CHOCHPh}), 2.40(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCH}_{2}\right), 1.69-1.59(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right) ; \delta_{\mathrm{c}}$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
(100.5 MHz, CDCl_{3}) 143.4, 137.4, 137.3, 129.8, 128.5, 128.2, 127.1, 125.6, 62.2, 58.9, 42.8, 29.3, 26.2, 21.5;MS (CI): $m / z(\%) 332$ ($\mathrm{MH}^{+}, 32 \%$), 314 ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 74 \%$), 161 ($\mathrm{M}^{+}-\mathrm{Tos}-\mathrm{O}$, 100%) and 155 (Tos, 10%); HRMS (CI) found 332.1320. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires 332.1320 (Found: C, 65.10%; H, $6.51 \% ; \mathrm{N}, 4.21 \% . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires $\mathrm{C}, 65.23 \% ; \mathrm{H}, 6.39 \%$; N , 4.23\%).

Depending on the reaction conditions a mixture of trans: cis epoxides was sometimes isolated; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.35-7.21(5 \mathrm{H}, \mathrm{m}$, ArH), 7.21-7.19 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $4.61(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 4.06(1 \mathrm{H}, \mathrm{d}, J 4.3 \mathrm{~Hz}, \mathrm{OCHPh})$, $3.17(1 \mathrm{H}$, ddd, $J 6.8,5.8$ and $4.3 \mathrm{~Hz}, \mathrm{CHOCHPh}), 2.89\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right) 2.41\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.70-1.50\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 143.4, 137.4, 137.3, 129.8, 128.5, 128.2, 127.1, 125.6, 58.5, 57.5, 42.7, 26.2, 24.2, 21.5.

Phenyl-[1-(toluene-4-sulfonyl)-pyrrolidin-2-yl]-methanol (7) as a colourless oil ($37 \mathrm{mg}, 18$ $\%$); R_{f} (EtOAc : pet. ether, 4:6) 0.46; IR (film) $3495,1494,1334,1154,816 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.47-7.23(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.65(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and $2.4 \mathrm{~Hz}, \mathrm{CHOH}), 3.87(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, \mathrm{OH}), 3.82(1 \mathrm{H}, \mathrm{td}, J 8.0$ and $2.5 \mathrm{~Hz}, \mathrm{NCHCHOH})$, 3.47-3.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$), $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56-1.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.40-1.10(2 \mathrm{H}, \mathrm{m}$, CH_{2}); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 143.8, 140.8, 134.0, 129.9, 128.4, 127.7, 127.4, 125.6, 76.2, 66.2, 49.8, 28.0, 24.1, 21.6; MS (CI) $m / z(\%) 332\left(\mathrm{MH}^{+}, 18 \%\right), 314\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 224$ $\left(\mathrm{M}^{+}-\mathrm{Tos}-\mathrm{H}_{2} \mathrm{O}, 67 \%\right)$ and 176 ($\mathrm{M}^{+}-\mathrm{Tos}, 20 \%$); HRMS (CI) found 332.1324. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires 332.1320; (Found: C, 65.10%; H, 6.52%; N, $4.17 \% . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires C , 65.23\%; H, 6.39\%; N, 4.23\%).

(R, R)-4-methyl- N-[3-(3-phenyl-oxiranyl)-propyl]-benzenesulfonamide (6)

6

To a solution of 1-[(4-methylphenyl)sulfonyl]-2-pyrrolidinol $3(0.15 \mathrm{~g}, 0.62 \mathrm{mmol})$ and chiral sulfonium salt $\mathbf{1 0}(0.29 \mathrm{~g}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base $(0.41 \mathrm{~mL}, 1.24 \mathrm{mmol})$. The reaction mixture was then stirred for 3 hours at $0{ }^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvents were removed in vacuo and the resultant residue was purified by column chromatography, eluting with $3: 2$ pet.

Supplementary Material (ESI) for Chemical Communications

 This journal is © The Royal Society of Chemistry 2006ether : EtOAc to give 6 as white solid ($111 \mathrm{mg}, 54 \%$); R_{f} (EtOAc : pet. ether, 4:6) 0.50; mp $77-79^{\circ} \mathrm{C}$; IR (film) $3276,3058,1496,1328,1157,815 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}$, d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $7.35-7.21(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.19(2 \mathrm{H}, \mathrm{dd}, J 8.3$ and $1.5 \mathrm{~Hz}, \mathrm{ArH}), 5.06(1 \mathrm{H}, \mathrm{t}$, $J 6.0 \mathrm{~Hz}, \mathrm{NH}$), 3.57 ($1 \mathrm{H}, \mathrm{d}, J 1.9 \mathrm{~Hz}, \mathrm{OCHPh}$), $3.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.88$ ($1 \mathrm{H}, \mathrm{ddd}, J 6.3,4.4$ and $1.9 \mathrm{~Hz}, \mathrm{CHOCHPh}), 2.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.69-1.59(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CHHCHH}), 1.57\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.4,137.4,137.3,129.8$, $128.5,128.2,127.1,125.6,62.2,58.9,42.8,29.3,26.2,21.5 ; \mathrm{MS}(\mathrm{CI}): m / z(\%) 332\left(\mathrm{MH}^{+}\right.$, 32%), $314\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 74 \%\right), 161\left(\mathrm{M}^{+}-\mathrm{Tos}-\mathrm{O}, 100 \%\right)$ and 155 (Tos, 10%); HRMS (CI) found 332.1320. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires 332.1320 (Found: C, 65.10%; H, 6.51%; N, 4.21%. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $\left.65.23 \% ; \mathrm{H}, 6.39 \% ; \mathrm{N}, 4.23 \%\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+180\left(c .0 .2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee for the chiral compound (94% ee) was measured by chiral HPLC using a Chiralcel OJ chiral column eluting with 95:5 hexane:isopropanol with a flow rate of $1 \mathrm{ml} / \mathrm{min}$ at room temperature $\left(\mathrm{t}_{\mathrm{RR}}\left(\right.\right.$ major $=18.8 \mathrm{~min}, \mathrm{t}_{\mathrm{SS}}($ minor $\left.)=26.3 \mathrm{~min}\right)$.

Phenyl-[1-(toluene-4-sulfonyl)-pyrrolidin-2-yl]-methanol (8)

To a solution of 1-[(4-methylphenyl)sulfonyl]-2-pyrrolidinol $3(0.15 \mathrm{~g}, 0.62 \mathrm{mmol})$ and 1 -benzyl-tetrahydro-thiophenium tetrafluoroborate $4(0.18 \mathrm{~g}, 0.68 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.41 \mathrm{~mL}, 1.24 \mathrm{mmol}$). The reaction mixture was left stirring for 18 h at 0 ${ }^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude material was purified by column chromatography, eluting with $3: 2$ pet. ether : EtOAc to give the product as white solid $(0.18 \mathrm{~g}, 89 \%), R_{\mathrm{f}}$ (EtOAc : pet. ether, 4:6) 0.43 ; mp 123-124 ${ }^{\circ} \mathrm{C}$, IR (film) $3337,1466,1378,1160,816 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.77 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.42-7.30 (5H, m, ArH), 7.29-7.24 (2H, m, ArH), 5.24 (1 H , dd, J 5.3 and $4.2 \mathrm{~Hz}, \mathrm{CHOH}), 3.81(1 \mathrm{H}, \mathrm{ddd}, J 8.2,5.3$ and $2.6 \mathrm{~Hz}, \mathrm{NCHCHOH}), 3.38-3.24(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{NCH}_{2}\right), 3.06(1 \mathrm{H}, \mathrm{d}, J 4.2 \mathrm{~Hz}, \mathrm{OH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.91-1.81(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.61-1.53$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.36-1.18(2 \mathrm{H}, \mathrm{m}, \mathrm{CH} H) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9,140.7,133.9$, $129.9,128.3,127.7,127.4,126.2,75.0,66.0,50.6,25.8,24.5,21.6$; Ms (CI) m / z (\%) 332 $\left(\mathrm{MH}^{+}, 16 \%\right), 314\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 161\left(\mathrm{M}^{+}-\mathrm{Tos}-\mathrm{O}, 100 \%\right)$ and 155 (Tos, 10%); HRMS

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006
(CI) found 332.1318. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires 332.1320; (Found: C, 65.12%; H, 6.48\%; N, $4.15 \% . \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$ requires C, 65.23%; H, 6.39%; $\mathrm{N}, 4.23 \%$).

(S)- $\alpha-(R)-$ Phenyl-[1-(toluene-4-sulfonyl)-pyrrolidin-2-yl]-methanol (8)

To a solution of 1-[(4-methylphenyl)sulfonyl]-2-pyrrolidinol 3 ($0.15 \mathrm{~g}, 0.62 \mathrm{mmol}$) and chiral sulfonium salt $\mathbf{1 0}(0.29 \mathrm{~g}, 0.68 \mathrm{mmol})$ in THF (3 mL) at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base $(0.41 \mathrm{~mL}, 1.24 \mathrm{mmol})$. The reaction mixture was left stirring for 18 h at $0^{\circ} \mathrm{C}$. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude material was purified by column chromatography, eluting with $3: 2$ pet. ether : EtOAc to give the product as white solid ($0.16 \mathrm{~g}, 79$ \%), R_{f} (EtOAc : pet. ether, 4:6) 0.43; $\mathrm{mp} 120-121^{\circ} \mathrm{C}$, IR (film) 3337, 1466, 1378, 1160, $816 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}$, d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.42-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.29-7.24(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.24(1 \mathrm{H}, \mathrm{dd}, J 5.3$ and $4.2 \mathrm{~Hz}, \mathrm{CHOH}), 3.81(1 \mathrm{H}$, ddd, $J 8.2,5.3$ and $2.6 \mathrm{~Hz}, \mathrm{NCHCHOH}), 3.38-3.24(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2}\right), 3.06(1 \mathrm{H}, \mathrm{d}, J 4.2 \mathrm{~Hz}, \mathrm{OH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.91-1.81(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.61-1.53$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHHCH}_{2}\right), 1.36-1.18(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH}) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9,140.7$, 133.9, $129.9,128.3,127.7,127.4,126.2,75.0,66.0,50.6,25.8,24.5,21.6$; Ms (CI) m / z (\%) 332 $\left(\mathrm{MH}^{+}, 16 \%\right), 314\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 161\left(\mathrm{M}^{+}-\mathrm{Tos}-\mathrm{O}, 100 \%\right)$ and 155 (Tos, 10%); HRMS (CI) found 332.1318. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires 332.1320; (Found: C, $65.12 \% ; \mathrm{H}, 6.48 \%$; N , $4.15 \% \mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3}$ S requires C, $65.23 \% ; \mathrm{H}, 6.39 \%$; $\mathrm{N}, 4.23 \%$); $[\alpha]_{\mathrm{D}}{ }^{23}-116$ (c. $1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). The ee for the chiral compound ($94 \% e e$) was measured by chiral HPLC using a Chiralcel OJ chiral column eluting with 90:10 hexane:isopropanol with a flow rate of $1 \mathrm{ml} / \mathrm{min}$ at room temperature $\left(\mathrm{t}_{\mathrm{SR}}(\right.$ major $)=19.2 \mathrm{~min}, \mathrm{t}_{\mathrm{RS}}($ minor $\left.)=27.8 \mathrm{~min}\right)$.

N-Benzyl-4-methyl-N-[3-(3-phenyl-oxiranyl)-propyl]-benzenesulfonamide (9)

By-products of the epoxidation reaction, isolated as mixtures of trans : cis (2:1) R_{f} (EtOAc : pet. ether, 4:6) 0.69; IR (film)/ 3056, 1496, 1336, 1158, $815 \mathrm{~cm}^{-1}$; trans isomer : δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.75(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), $7.40-7.20(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.15(2 \mathrm{H}, \mathrm{d}, J 8.3$ $\mathrm{Hz}, \mathrm{ArH}), 4.32(1 \mathrm{H}, \mathrm{d}, J 14.6 \mathrm{~Hz}, \mathrm{NC} H \mathrm{HPh}), 4.28(1 \mathrm{H}, \mathrm{d}, J 14.6 \mathrm{~Hz}, \mathrm{NC} H \mathrm{HPh}), 3.42(1 \mathrm{H}, \mathrm{d}$,

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
$J 1.9 \mathrm{~Hz}, \mathrm{OCHPh}), 3.15\left(2 \mathrm{H}, \mathrm{t}, J 5.9 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.71(1 \mathrm{H}, \mathrm{td}, J 5.4$ and $1.9 \mathrm{~Hz}, \mathrm{CHOCHPh})$, $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.66-1.20\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9,137.9,136.2$, 136.0, 129.8, 128.6, 128.6, 128.5, 128.4, 128.1, 127.2, 125.6, 62.2, 58.3, 52.2, 48.1, 29.5, 24.7, 21.7, cis isomer : $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.69(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.40-7.20(10 \mathrm{H}, \mathrm{m}$, ArH), 7.15 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 4.21 ($1 \mathrm{H}, \mathrm{d}, J 14.6 \mathrm{~Hz}, \mathrm{NCHHPh}$), 4.13 ($1 \mathrm{H}, \mathrm{d}, J 14.6 \mathrm{~Hz}$, NCHHPh), $3.97(1 \mathrm{H}, \mathrm{d}, J 3.9 \mathrm{~Hz}, \mathrm{OCHPh}), 2.98\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right.$ and CHOCHPh$), 2.44(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 1.66-1.20 (4H, m, $2 \times \mathrm{CH}_{2}$); $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9,137.9,136.2,136.0$, 129.8, 128.6, 128.6, 128.5, 128.4, 128.1, 127.2, 125.6, 58.4, 57.3, 51.9, 47.8, 29.5, 24.6, 21.7.

trans-2-Phenyl-1-(toluene-4-sulfonyl)-piperidin-3-ol (12)

To a solution of 4-methyl-N-[3-(3-phenyl-oxiranyl)-propyl]-benzenesulfonamide 6 $(0.070 \mathrm{~g}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was added trimethylsilyl trifluoromethanesulfonate $(0.040 \mathrm{~g}, 0.70 \mathrm{mmol})$. After 48 h the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (920 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude product purified by column chromatography, eluting with $3: 2$ pet. ether : EtOAc to give the product as white solid ($67 \mathrm{mg}, 98 \%$), $R_{\mathrm{f}}(\mathrm{EtOAc}:$ pet. ether, $4: 6) 0.32$; $\mathrm{mp} 152-153{ }^{\circ} \mathrm{C}$; IR (film) $1595,1496,1338,1159,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH})$, 7.48-7.16 ($7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $5.18(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCHPh}), 4.43(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.75(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NCHH}), 3.15(1 \mathrm{H}, \mathrm{td}, J 12.7$ and $3.2 \mathrm{~Hz}, \mathrm{NCHH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}, \mathrm{d}, J 6.6 \mathrm{~Hz}$, $\mathrm{OH}), 1.87-1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.70-1.60(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.59-1.50(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}) ; \delta_{\mathrm{c}}$ (100.5 MHz, CDCl_{3}) 143.9, 138.2, 137.9, 129.5, 128.7, 128.6, 127.3, 126.8, 67.5, 62.3, 41.7, 25.7, 21.5, 18.5; MS (CI) m/z (\%) 332 ($\mathrm{MH}^{+}, 92 \%$), 314 ($\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%$), 176 ($\mathrm{M}^{+}-\mathrm{Tos}$, 92%) and 161 (M^{+}-Tos-O, 98\%); HRMS (CI) found 332.1324. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires 332.1320 .
(2R, 3S)-2-Phenyl-1-(toluene-4-sulfonyl)-piperidin-3-ol (12)

To a solution of $(R, \quad R)$-4-methyl-N-[3-(3-phenyl-oxiranyl)-propyl]benzenesulfonamide $6(0.070 \mathrm{~g}, 0.70 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at room temperature was added trimethylsilyl trifluoromethanesulfonate $(0.040 \mathrm{~g}, 0.70 \mathrm{mmol})$. After 48 h the reaction

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2006
was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(920 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude product purified by column chromatography, eluting with $3: 2$ pet. ether : EtOAc to give the product as white solid ($69 \mathrm{mg}, 100 \%$), R_{f} (EtOAc : pet. ether, 4:6) 0.32; mp 156-158 ${ }^{\circ} \mathrm{C}$; IR (film) $1595,1496,1338,1159,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}$, d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}$), 7.48-7.16 (7H, m, ArH), 5.18 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCHPh}$), 4.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), $3.75(1 \mathrm{H}, \mathrm{m}, \mathrm{NCHH}), 3.15(1 \mathrm{H}, \mathrm{td}, J 12.7$ and $3.2 \mathrm{~Hz}, \mathrm{NCHH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.25(1 \mathrm{H}$, d, $J 6.6 \mathrm{~Hz}, \mathrm{OH}), 1.87-1.71(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 1.70-1.60(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.59-1.50(1 \mathrm{H}, \mathrm{m}$, $\mathrm{C} H \mathrm{H}) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9,138.2,137.9,129.5,128.7,128.6,127.3,126.8,67.5$, 62.3, 41.7, 25.7, 21.5, 18.5; MS (CI) m/z (\%) $332\left(\mathrm{MH}^{+}, 92 \%\right), 314\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 176$ $\left(\mathrm{M}^{+}-\right.$Tos, $\left.92 \%\right)$ and $161\left(\mathrm{M}^{+}-\right.$Tos-O, 98\%); HRMS (CI) found 332.1324. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}$ requires $332.1320 ;[\alpha]_{D}{ }^{23}-33\left(c .0 .6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee for the chiral compound $(93 \% e e)$ was measured by chiral HPLC using a Chiralcel OD chiral column eluting with 96.5:3.5 hexane:isopropanol with a flow rate of $1 \mathrm{ml} / \mathrm{min}$ at room temperature $\left(\mathrm{t}_{\mathrm{SR}}(\mathrm{minor})=45.8 \mathrm{~min}\right.$, $t_{\text {RS }}($ major $\left.)=62.3 \mathrm{~min}\right)$.

[3-(3-Phenyl-oxiranyl)-propyl]-carbamic acid tert-butyl ester

To a solution of tert-butyl 2-hydroxy-1-pyrrolidinecarboxylate ($0.15 \mathrm{~g}, 0.80 \mathrm{mmol}$) and 1-benzyl-tetrahydro-thiophenium tetrafluoroborate ($0.23 \mathrm{~g}, 0.88 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.53 \mathrm{~mL}, 1.60 \mathrm{mmol}$). The reaction mixture was monitored by TLC and after completion the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude product was then purified by column chromatography, eluting with 3:2 pet. ether : EtOAc to give the product as a mixture of trans:cis mixture (5:1) in the form of a colourless oil ($31 \mathrm{mg}, 14 \%$), R_{f} (EtOAc : pet. ether, 4:6) 0.55; IR (film) 2253, 1686, 1393, 1367, 1253, $903 \mathrm{~cm}^{-1}$; trans isomer : $\delta_{\mathrm{H}}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 7.39-7.22 ($\left.5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}\right), 4.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.63(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}, \mathrm{OCHPh}), 3.31-$ $3.20\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right), 2.96(1 \mathrm{H}, \mathrm{td}, J 4.4$ and $2.0 \mathrm{~Hz}, \mathrm{CHOCHPh}), 2.00-1.63(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 156.0,137.6,128.5,128.1,125.1$, $80.2,62.6,58.6,40.2,29.6,28.6,28.5$; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.22(5 \mathrm{H}, \mathrm{m}$,

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

ArH), $4.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 4.05(1 \mathrm{H}, \mathrm{d}, J 4.2 \mathrm{~Hz}, \mathrm{OCHPh}), 3.10-2.97\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}\right.$ and $\mathrm{CHOCHPh}), 2.00-1.63\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $156.0,135.8,128.5,128.1,125.1,79.8,58.9,57.9,40.2,29.6,28.6,28.5$; MS (CI) $m / z(\%)$ $278\left(\mathrm{MH}^{+}, 23 \%\right), 222\left(\mathrm{M}^{+}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, 55 \%\right), 178\left(\mathrm{M}^{+}-\mathrm{Boc}, 29 \%\right)$ and $170\left(\mathrm{M}^{+}-\mathrm{PhCH}_{2} \mathrm{O}\right.$, 100%); HRMS (CI) found 278.1746. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3}$ requires 278.1756.

4-Methyl-N-[4-(3-phenyl-oxiranyl)-butyl]-benzenesulfonamide

To a solution of 1-(toluene-4-sulfonyl)-piperidin-2-ol ($0.13 \mathrm{~g}, 0.51 \mathrm{mmol}$) and 1-benzyl-tetrahydro-thiophenium tetrafluoroborate $(0.15 \mathrm{~g}, 0.56 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.34 \mathrm{~mL}, 1.02 \mathrm{mmol}$). After completion the reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude material was then purified by column chromatography, eluting with $3: 2$ pet. ether : EtOAc to give the product as a trans : cis mixture (1.5:1) in the form of a colourless oil (58 $\mathrm{mg}, 33 \%), R_{\mathrm{f}}\left(\mathrm{EtOAc}:\right.$ pet. ether, 4:6) 0.52 ; trans isomer : $\delta_{\mathrm{H}}(400 \mathrm{MHz} \mathrm{CDCl} 3) 7.74(2 \mathrm{H}, \mathrm{d}$, $J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.39-7.17(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.92(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 3.56(1 \mathrm{H}, \mathrm{d}, J 2.0 \mathrm{~Hz}$, OCHPh), $2.96\left(2 \mathrm{H}, \mathrm{q}, J 6.3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.85(1 \mathrm{H}, \mathrm{td}, J 6.3$ and $2.0 \mathrm{~Hz}, \mathrm{CHOCHPh}), 2.44(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}\right), 1.72-1.45\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.42-1.34\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.9$, $137.8,137.4,129.7,128.5,128.1,127.1,126.4,62.7,58.5,43.0,31.7,29.3,23.0,21.6$; cis isomer: $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.70(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.39-7.17(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.72(1 \mathrm{H}$, $\mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 4.04(1 \mathrm{H}, \mathrm{d}, J 4.4 \mathrm{~Hz}, \mathrm{OCHPh}), 3.12(1 \mathrm{H}, \mathrm{td}, J 5.9$ and $4.4 \mathrm{~Hz}, \mathrm{CHOCHPh})$, 2.83-2.76 ($2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{2}$) $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.72-1.45\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}(100.5 \mathrm{MHz}$, CDCl_{3}) 143.9, 138.7, 135.7, 129.7, 128.1, 127.1, 126.4, 125.6, 59.1, 57.4, 42.9, 29.3, 26.1, 23.0, 21.6.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

\mathbf{N}-1-(3-Hydroxypropyl)-4-methyl-1-benzenesulfonamide ${ }^{11}$

To a solution of 3-aminopropan-1-ol $(5.00 \mathrm{~g}, 66.0 \mathrm{mmol})$, triethylamine (18.56 g , $133.0 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under nitrogen was added a solution of p toluenesulfonyl chloride ($13.84 \mathrm{~g}, 72.6 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ drop-wise over 10 min . After 1 h the reaction mixture warmed to room temperature and stirred for a further 18 h . The reaction was quenched with aqueous $\mathrm{NaHCO}_{3}(5 \%, 25 \mathrm{~mL})$ and $\mathrm{EtOAc}(50 \mathrm{~mL})$ was added. The organic layer was separated and washed with aqueous citric acid solution $(5 \%, 2 \times 20$ $\mathrm{mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(5 \%, 2 \times 20 \mathrm{~mL})$ and brine $(1 \times 20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo to give the product as a colourless oil ${ }^{11}$ ($13.76 \mathrm{~g}, 91 \%$); IR (film) $3500,3276,2948,2881,1317,1151 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.75(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.31(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 5.23(1 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}$, $\mathrm{NH}), 3.72\left(2 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 3.08\left(2 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.13$ $(1 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{OH}), 1.70\left(2 \mathrm{H}\right.$, quin., $\left.J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$.

N-1-(3-Oxopropyl)-4-methyl-1-benzenesulfonamide (13)

To a solution of oxalyl chloride $(1.66 \mathrm{~g}, 13.1 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under nitrogen was added anhydrous DMSO ($3.10 \mathrm{~mL}, 43.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ drop-wise over 3 min and the reaction mixture stirred for a further 30 min at $-78{ }^{\circ} \mathrm{C}$. A solution of N -1-(3-hydroxypropyl)-4-methyl-1-benzenesulfonamide ($2.00 \mathrm{~g}, 8.7 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was then added drop-wise over 3 min and stirred for a further 50 \min. Diisopropylamine ($10.6 \mathrm{~mL}, 61.0 \mathrm{mmol}$) was then added and the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$ over 30 min . The reaction was acidified with saturated aqueous citric acid $(\mathrm{pH} 5)$ and extracted with $1: 1 \mathrm{Et}_{2} \mathrm{O}: \mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The combined organic layers were then washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(2 \times 30 \mathrm{~mL})$ and brine $(1 \times 30$ mL), and then dried $\left(\mathrm{MgSO}_{4}\right)$. The organic layers were then concentrated in vacuo and the residue was purified by column chromatography, eluting with $1: 2$ EtOAc : pet. ether followed

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006
by $1: 1$ EtOAc : pet. ether to give the product as a yellow oil ($1.26 \mathrm{~g}, 65 \%$); IR (film) 1719, $1322,1154 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.72(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.74(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.31$ $(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{ArH}), 5.11(1 \mathrm{H}, \mathrm{m}, \mathrm{NH}), 3.20\left(2 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.74(2 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}$, CH_{2}), $2.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 200.7, 143.7, 137.0, 129.9, 127.1, 43.7, 36.9, 21.5.
trans-4-Methyl-N-[2-(3-phenyl-oxiranyl)-ethyl]-benzenesulfonamide (14)

To a solution of N-1-(3-oxopropyl)-4-methyl-1-benzenesulfonamide 13 ($0.15 \mathrm{~g}, 0.66$ $\mathrm{mmol})$ and 1-benzyl-tetrahydro-thiophenium tetrafluoroborate $4(0.19 \mathrm{~g}, 0.72 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base $(0.41 \mathrm{~mL}, 1.22 \mathrm{mmol})$. The reaction mixture was then stirred for 7 h at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were then washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude material was purified by column chromatography, eluting with 3:2 pet. ether : EtOAc to give the product as white solid ($44 \mathrm{mg}, 21 \%$), R_{f} (EtOAc : pet. ether, 4:6) 0.51 ; mp 123-124 ${ }^{\circ} \mathrm{C}$; IR (film) 3343, 1496, 1378, 1160, 951, 896, $815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.76(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.38-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22-$ $7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.95(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 3.59(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, \mathrm{OCHPh}), 3.17(2 \mathrm{H}, \mathrm{q}, J$ $6.3 \mathrm{~Hz}, \mathrm{NCH}_{2}$), $2.95(1 \mathrm{H}$, ddd, $J 6.3,3.9$ and $2.4 \mathrm{~Hz}, \mathrm{CHOCHPh}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12-$ $1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.78-1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.6,136.8,136.8$, $129.8,128.6,128.4,127.2,125.6,60.8,58.0,40.5,31.7,21.6$; MS (CI) $m / z(\%) 318\left(\mathrm{MH}^{+}\right.$, $64 \%), 300\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 162\left(\mathrm{M}^{+}-\mathrm{Tos}, 72 \%\right)$ and 155 (Tos, 10\%); HRMS (CI) found 318.1171. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ requires 318.1163 .

(R, R)-4-Methyl-N-[2-(3-phenyl-oxiranyl)-ethyl]-benzenesulfonamide (14)

To a solution of N-1-(3-oxopropyl)-4-methyl-1-benzenesulfonamide 13 ($0.15 \mathrm{~g}, 0.66$ $\mathrm{mmol})$ and chiral sulfonium salt $\mathbf{1 0}(0.31 \mathrm{~g}, 0.72 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base ($0.41 \mathrm{~mL}, 1.22 \mathrm{mmol}$). The reaction mixture was then stirred for 7 h at $0{ }^{\circ} \mathrm{C}$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were then washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006
material was purified by column chromatography, eluting with 3:2 pet. ether : EtOAc to give the product as white solid ($44 \mathrm{mg}, 21 \%$), $R_{\mathrm{f}}\left(\mathrm{EtOAc}:\right.$ pet. ether, 4:6) $0.51 ; \mathrm{mp} 127-130{ }^{\circ} \mathrm{C}$; IR (film) $3343,1496,1378,1160,951,896,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.76(2 \mathrm{H}, \mathrm{d}, J 8.3$ $\mathrm{Hz}, \mathrm{ArH}), 7.38-7.27(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.22-7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.95(1 \mathrm{H}, \mathrm{t}, J 6.3 \mathrm{~Hz}, \mathrm{NH}), 3.59$ $(1 \mathrm{H}, \mathrm{d}, J 2.4 \mathrm{~Hz}, \mathrm{OCHPh}), 3.17\left(2 \mathrm{H}, \mathrm{q}, J 6.3 \mathrm{~Hz}, \mathrm{NCH}_{2}\right), 2.95(1 \mathrm{H}, \mathrm{ddd}, J 6.3,3.9$ and 2.4 Hz , CHOCHPh), $2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12-1.97(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.78-1.63(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}) ; \delta_{\mathrm{c}}(100.5$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $143.6,136.8,136.8,129.8,128.6,128.4,127.2,125.6,60.8,58.0,40.5,31.7$, 21.6; MS (CI) $m / z(\%) 318\left(\mathrm{MH}^{+}, 64 \%\right), 300\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 162\left(\mathrm{M}^{+}-\mathrm{Tos}, 72 \%\right)$ and 155 (Tos, 10%); HRMS (CI) found 318.1171. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ requires 318.1163; $[\alpha]_{\mathrm{D}}{ }^{23}+29$ (c. 0.4, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).The ee for the chiral compound ($91 \% e e$) was measured by chiral HPLC using a Chiralcel OD chiral column eluting with 97.5:2.5 hexane:isopropanol with a flow rate of 1 $\mathrm{ml} / \mathrm{min}$ at room temperature $\left(\mathrm{t}_{\mathrm{RR}}(\right.$ major $)=127.5 \mathrm{~min}, \mathrm{t}_{\mathrm{SS}}($ minor $\left.)=138.3 \mathrm{~min}\right)$.

trans-2-Phenyl-1-(toluene-4-sulfonyl)-pyrrilidin-3-ol (15)

To a solution of N-1-(3-oxopropyl)-4-methyl-1-benzenesulfonamide 13 ($0.15 \mathrm{~g}, 0.66$ $\mathrm{mmol})$ and 1-benzyl-tetrahydro-thiophenium tetrafluoroborate $4(0.19 \mathrm{~g}, 0.72 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added P_{2} base $(0.41 \mathrm{~mL}, 1.22 \mathrm{mmol})$. The reaction mixture was stirred for 8 h and then heated to reflux for 12 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude material was then purified by column chromatography, eluting with 3:2 pet. ether : EtOAc to afford the product as white solid ($149 \mathrm{mg}, 71 \%$), $R_{\mathrm{f}}\left(\mathrm{EtOAc}:\right.$ pet. ether, $4: 6$) 0.40 ; mp $117-119{ }^{\circ} \mathrm{C}$; IR (film) $1495,1337,1158,1058,814 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.45-$ $7.10(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCHPh}), 4.13(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.71(1 \mathrm{H}, \mathrm{td}, J 9.5$ and 2.4 $\mathrm{Hz}, \mathrm{NCHH}), 3.51(1 \mathrm{H}, \mathrm{dt}, J 9.5$ and $6.8 \mathrm{~Hz}, \mathrm{NCHH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 2.08-1.93 ($1 \mathrm{H}, \mathrm{m}$, $\mathrm{CHH}), 1.84-1.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ and OH$)$; $\delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.5,140.0,134.1,129.6$, $128.5,127.8,127.5,126.2,78.7,72.0,46.9,31.2,21.6$; MS (CI) $m / z(\%) 318\left(\mathrm{MH}^{+}, 62 \%\right)$, $300\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 162\left(\mathrm{M}^{+}-\mathrm{Tos}, 69 \%\right)$; HRMS (CI) found 318.1167. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ requires 318.1163 .

To a solution of N-1-(3-oxopropyl)-4-methyl-1-benzenesulfonamide $13(0.15 \mathrm{~g}, 0.66$ $\mathrm{mmol})$ and chiral sulfonium salt $10(0.31 \mathrm{~g}, 0.72 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added P_{2} base ($0.41 \mathrm{~mL}, 1.22 \mathrm{mmol}$). The reaction mixture was stirred for 8 h and then heated to reflux for 12 h . The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was removed in vacuo. The crude material was then purified by column chromatography, eluting with 3:2 pet. ether : EtOAc to afford the product as white solid ($149 \mathrm{mg}, 71 \%$), R_{f} (EtOAc : pet. ether, 4:6) $0.40 ; \mathrm{mp} 115-116^{\circ} \mathrm{C}$; IR (film) $1495,1337,1158,1058,814 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.45-7.10(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.67(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, NCHPh), 4.13 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$), $3.71(1 \mathrm{H}, \mathrm{td}, J 9.5$ and $2.4 \mathrm{~Hz}, \mathrm{NCHH}), 3.51(1 \mathrm{H}, \mathrm{dt}, J 9.5$ and $6.8 \mathrm{~Hz}, \mathrm{NCHH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.08-1.93(1 \mathrm{H}, \mathrm{m}, \mathrm{CHH}), 1.84-1.66(2 \mathrm{H}, \mathrm{m}, \mathrm{CHH}$ and $\mathrm{OH}) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.5,140.0,134.1,129.6,128.5,127.8,127.5,126.2,78.7$, $72.0,46.9,31.2,21.6 ; \mathrm{MS}(\mathrm{CI}) m / z(\%) 318\left(\mathrm{MH}^{+}, 62 \%\right), 300\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 100 \%\right), 162\left(\mathrm{M}^{+}-\right.$ Tos, 69%); HRMS (CI) found 318.1167. $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ requires 318.1163; $[\alpha]_{\mathrm{D}}{ }^{23}-256$ (c. 0.25 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

2-Phenyl-1-(toluene-4-sulfonyl)-piperidin-3-one (17)

To a solution of 2-phenyl-1-(toluene-4-sulfonyl)-piperidin-3-ol 12 ($72 \mathrm{mg}, 0.22 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.2 \mathrm{~mL})$ at room temperature was added Dess Martin periodinane ($0.420 \mathrm{~g}, 0.99$ mmol) and the reaction mixture was stirred for 4 h . The reaction was quenched with aqueous $\mathrm{NaHCO}_{3}(10 \%, 5 \mathrm{~mL})$ and the organic layer was separated. The aqueous layer was further extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (30 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The crude material was purified by column chromatography, eluting with 3:2 pet. ether : EtOAc to give the product as white solid ($62 \mathrm{mg}, 85 \%$); mp $152-154{ }^{\circ} \mathrm{C}$; IR (film) $1603,1495,1720,1160,815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.72(2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.41-7.24(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 5.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NCHPh})$, $3.85(1 \mathrm{H}, \mathrm{dt}, J 14.0$ and $5.0 \mathrm{~Hz}, \mathrm{NCHH}), 3.46(1 \mathrm{H}, \mathrm{ddd}, J 14.0,9.6$ and $4.3 \mathrm{~Hz}, \mathrm{NC} H \mathrm{H}), 2.44$

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.42-2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.80-1.59\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 204.5$, $143.9,137.2,134.1,130.0,129.2,128.2,127.1,125.8,66.8,41.2,36.8,23.6,21.6$; MS (CI) $m / z(\%) 330\left(\mathrm{MH}^{+}, 100 \%\right), 252\left(\mathrm{M}^{+}-\mathrm{Ph}, 19 \%\right), 174\left(\mathrm{M}^{+}-\mathrm{Tos}, 100 \%\right)$ and $158\left(\mathrm{M}^{+}-\mathrm{Tos}-\mathrm{NH}_{2}\right.$, 46\%); HRMS (CI) found 330.1165. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ requires 330.1164 .
(2R, 3R)-3-Amino-2-Phenyl-1-(toluene-4-sulfonyl)-piperidine (19)

To a solution of 2-phenyl-1-(toluene-4-sulfonyl)-piperidin-3-one 17 ($55 \mathrm{mg}, 0.17$ mmol) in pyridine (3.0 mL) at room temperature was added methoxyamine hydro chlorite (25 $\mathrm{mg}, 0.20 \mathrm{mmol}$) and the reaction mixture was stirred for 6 h . The reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \%, 5 \mathrm{~mL})$, and the resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine $(30 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. The residue was dissolved in THF (3 mL) and a solution of $\mathrm{BH}_{3} \cdot \mathrm{Me}_{2} \mathrm{~S}(1 \mathrm{M}, 1 \mathrm{~mL})$ was added. The reaction mixture was heated to reflux for $15 \mathrm{~h} . \mathrm{MeOH}$ $(5 \mathrm{~mL})$ was carefully added drop-wise followed by a solution of $\mathrm{Et}_{2} \mathrm{O} . \mathrm{HCl}(1 \mathrm{M}, 3 \mathrm{~mL})$. The reaction mixture was heated to reflux for 1 h and the solvents were removed in vacuo. The residue was dissolved in an aqueous solution of $\mathrm{HCl}(1 \mathrm{~N}, 15 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 15 \mathrm{~mL})$. Ammonia in water was then added to the aqueous layer $(\sim \mathrm{pH}=12)$ and was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were washed with brine (30 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvents were removed in vacuo. This afforded the product as a colourless oil ($47 \mathrm{mg}, 77 \%$); IR (film) 2986, 1495, 1151, $815 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) 7.30-7.14 (7H, m, ArH), 6.99 ($2 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, ~ \mathrm{ArH}$), 5.11 ($1 \mathrm{H}, \mathrm{d}, J 6.2 \mathrm{~Hz}, \mathrm{NCHPh}$), 3.81 (1 H , ddd, J 12.6, 3.3 and $2.0 \mathrm{~Hz}, \mathrm{NHCHH}$), $3.16\left(1 \mathrm{H}\right.$, ddd, $J 12.1,6.2$ and $4.1 \mathrm{~Hz}, \mathrm{C}_{2} \mathrm{NH}_{2}$), $3.09(1 \mathrm{H}, \mathrm{td}, J 12.6$ and $3.5 \mathrm{~Hz}, \mathrm{NHCHH}), 2.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.94-1.85(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}), 1.84-$ $1.70(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{HCHH}), 1.65-1.55(1 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{H}) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 142.5,136.7$, $136.5,130.0,129.0,128.2,127.7,127.0,62.2,51.3,41.3,28.3,24.5,21.4$; MS (CI) $\mathrm{m} / \mathrm{z}(\%)$ $331\left(\mathrm{MH}^{+}, 78 \%\right), 314\left(\mathrm{M}^{+}-\mathrm{NH}_{2}, 100 \%\right), 175\left(\mathrm{M}^{+}-\mathrm{Tos}, 69 \%\right)$ and $160\left(\mathrm{MH}^{+}-\mathrm{Tos}^{-} \mathrm{NH}_{2}, 47 \%\right)$; HRMS (CI) found 331.1479. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$ requires 331.1480; $[\alpha]_{\mathrm{D}}{ }^{23}-71\left(c .0 .16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. The ee for the chiral compound (89% ee) was measured by chiral HPLC using a Chiralcel OD

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
chiral column eluting with 98:2 hexane:isopropanol with a flow rate of $1 \mathrm{ml} / \mathrm{min}$ at room temperature $\left(\mathrm{t}_{\mathrm{SS}}(\right.$ minor $)=180.4 \mathrm{~min}, \mathrm{t}_{\mathrm{RR}}($ major $\left.)=195.2 \mathrm{~min}\right)$.

cis-3-Amino-2-Phenyl-piperidine (20) ${ }^{12}$

To a solution of naphthalene $(0.52 \mathrm{~g}, 3.96 \mathrm{mmol})$ in 1,2-dimethoxy-ethane $(5 \mathrm{~mL})$ at room temperature was added finely chopped sodium metal $(0.09 \mathrm{~g}, 3.60 \mathrm{mmol})$. The reaction was stirred for 2 h , during which a dark green solution appeared. 3-Amino-2-phenyl-1-(toluene-4-sulfonyl)-piperidine $\mathbf{1 9}(0.06 \mathrm{~g}, 0.18 \mathrm{mmol})$ in 1,2-dimethoxy-ethane (1.0 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. The Na-naphthalenide solution was added drop-wise to this reaction using a syringe, until a dark green colour persisted for 5 min . The reaction mixture was then left stirring for 1 h . The reaction was quenched at $-78^{\circ} \mathrm{C}$ with 1-2 drops of water (to discharge the green colour) and diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. This afforded a cloudy suspension which was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concetrated. Purification by column chromatography, eluting with 200: 9: $1 \mathrm{CHCl}_{3}: \mathrm{MeOH}: \mathrm{NH}_{3}$ gave the product as a colourless oil ${ }^{12}(28 \mathrm{mg}, 89 \%)$; δ_{H} ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.34-7.21 (5H, m, ArH), $3.81(1 \mathrm{H}, \mathrm{d}, J 2.9 \mathrm{~Hz}, \mathrm{NCHPh}), 3.17(1 \mathrm{H}, \mathrm{m})$, $2.95(1 \mathrm{H}, \mathrm{br}$ dd, $J 5.1$ and 2.6 Hz$), 2.74(1 \mathrm{H}, \operatorname{td}, J 11.7$ and 2.9 Hz$), 1.92(1 \mathrm{H}, \mathrm{m}),, 1.82-1.73$ $(2 \mathrm{H}, \mathrm{m}), 1.60-1.40\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ; \delta_{\mathrm{c}}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 143.2,127.0,126.9,126.7$, 65.2, 51.0, 47.8, 32.6, 20.0; MS (CI) $m / z(\%) 177\left(\mathrm{MH}^{+}, 3 \%\right), 160\left(\mathrm{MH}^{+}-\mathrm{NH}_{3}, 5 \%\right), 97\left(\mathrm{M}^{+}-\right.$ $\mathrm{Ph}, 100 \%)$ and $82\left(\mathrm{MH}^{+}-\mathrm{Ph}-\mathrm{NH}_{3}, 47 \%\right)$.

Supplementary information: X-ray Crystallography

Compound 8

An x-ray diffraction experiment on compound 8 was carried out at 100 K on a Bruker PROTEUM diffractometer using $\mathrm{Cu}-\mathrm{K} \alpha$ X-radiation $(\lambda=1.54178 \AA$) and a CCD areadetector, from a single crystal coated in paraffin oil mounted on a glass fibre. Intensities were integrated ${ }^{i}$ from several series of exposures, each exposure covering 0.3° in ω. Absorption corrections were based on equivalent reflections using SADABS V2.10, ${ }^{\text {ii }}$ and structures were refined against all F_{0}^{2} data with hydrogen atoms riding in calculated positions using SHELXTL ${ }^{\text {iii }}$ Crystal and refinement data are given in Table 1.

Table 1 : Crystal and refinement data for compound $\mathbf{8}$

Colour, habit	colourless block	
Empirical Formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$	
M		
Crystal system	monoclinic	
Space group	$P 2_{1 / n}$	
a / \AA		
b / \AA		
$\mathrm{c} \AA$		$9.4610(19)$
α°		$18.6300(4)$
β°		$10.0330(2)$
γ°	90	
$\mathrm{~V} / \AA^{-3}$		112.92
Z		90

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

μ / mm^{-1}	0.213
$\mathrm{~T} / \mathrm{K}$	100
Reflections:	$3722 / 3386 / 0.0334$
total/independent $/ \mathrm{R}_{\text {int }}$	
Final R_{1} and $\mathrm{w} R_{2}$	$0.0443,0.1040$

${ }^{1}$ SAINT integration software, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
${ }^{1}$ SADABS V2.10, Sheldrick, G.M., University of Göttingen, 2003.
${ }^{1}$ SHELXTL program system version 6.14; Bruker Analytical X-ray Instruments Inc., Madison, WI, 2000-2003.

Compound 12

An x-ray diffraction experiment on compound $\mathbf{1 2}$ was carried out at 100 K on a Bruker PROTEUM diffractometer using $\mathrm{Cu}-\mathrm{K} \alpha$ X-radiation $(\lambda=1.54178 \AA$) and a CCD areadetector, from a single crystal coated in paraffin oil mounted on a glass fibre. Intensities were integrated $^{\text {iv }}$ from several series of exposures, each exposure covering 0.3° in ω. Absorption corrections were based on equivalent reflections using SADABS V2.10, ${ }^{\mathrm{v}}$ and structures were refined against all $F_{0}{ }^{2}$ data with hydrogen atoms riding in calculated positions using SHELXTL ${ }^{\text {vi }}$ Crystal and refinement data are given in Table 2.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
Table 2 : Crystal and refinement data for compound 12

Colour, habit
Empirical Formula
M
Crystal system Space group a/ \AA b/Å cÅ α°
$\underline{\beta}^{\circ}$ γ° V/ \AA^{-3} Z
μ / mm^{-1}
T/K
Reflections:
total/independent $/ \mathrm{R}_{\text {int }}$ Final R_{1} and $\mathrm{w} R_{2}$
colourless block
$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$
331.42
orthorhombic Pbca 8.0828(3)
18.1324(5)
22.0830(7)

90
90
90
3236.50(18)

8
1.9

100
3033/2491/0.0649

$$
0.0524,0.1568
$$

[^0]
Compound 15

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
An x-ray diffraction experiment on compound 15 was carried out at 100 K on a Bruker PROTEUM diffractometer using $\mathrm{Cu}-\mathrm{K} \alpha$ X-radiation ($\lambda=1.54178 \AA$) and a CCD areadetector, from a single crystal coated in paraffin oil mounted on a glass fibre. Intensities were integrated ${ }^{\text {vii }}$ from several series of exposures, each exposure covering 0.3° in ω. Absorption corrections were based on equivalent reflections using SADABS V2.10, ${ }^{\text {viii }}$ and structures were refined against all F_{0}^{2} data with hydrogen atoms riding in calculated positions using SHELXTL ${ }^{\text {ix }}$ Crystal and refinement data are given in Table 3.

Table 3 : Crystal and refinement data for compound 15

Colour, habit	colourless needle
Empirical Formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}$
M	317.39
Crystal system	monoclinic
Space group	$P 2_{l / C}$
a / \AA	$7.7097(15)$
b / \AA	$18.1324(5)$
$\mathrm{c} \AA$	$19.5460(4)$
α°	90
β°	94.63
γ°	90
$\mathrm{~V} / \AA^{-3}$	1563.75
Z	4
μ / mm^{-1}	0.219
$\mathrm{~T} / \mathrm{K}$	100
Reflections:	$3578 / 2953 / 0.0442$
total/independent $/ \mathrm{R}_{\text {int }}$	
Final R_{1} and $\mathrm{w} R_{2}$	$0.0437,0.1054$

[^1]
References:

1 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics, 1996, 15, 1518.
2 S. Zhu, G. Jin and Y. Xu, Tetrahedron, 2003, 59, 4389-4394.
3 J. Ahman and P. Somfai, Tetrahedron, 1992, 48, 9537-9544.
4 M. Mori, Y. Washioka, T. Urayama, K. Yoshiura, K. Chiba and Y. Ban, J. Org. Chem., 1983, 48, 4058-4067.
5 W. Hu, E. Reder and M. Hesse, Helv. Chim. Acta, 1996, 79, 2137-2151.

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006
6 R. K. Dieter and R. R. Sharma, J. Org. Chem., 1996, 61, 4180-4184.
7 M. W. Hosseini, J. Comarmond and J. M. Lehn, Helv. Chim. Acta, 1989,726, 1066-1077.
8 N. Katagiri, M. Muto, M. Nomura, T. Higaskikawa and C. Kaneko, Chem. Pharm. Bull, 1991, 39, 1112-1122.
9 G. Kokotos, Synthesis, 1990, 299-301.
10 O. Okitsu, R. Suzuki and S. Kobayashi, J. Org. Chem., 2001, 66, 809-823.
11 T. R. Bailey, R. S. Garigipati, J. A. Morton and S. M. Weinreb, J. Am. Chem. Soc., 1984, 106, 3240-3245.

12 T. J. Rosen, US 5686615, 1997.

[^0]: ${ }^{1}$ SAINT integration software, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
 ${ }^{1}$ SADABS V2.10, Sheldrick, G.M., University of Göttingen, 2003.
 ${ }^{1}$ SHELXTL program system version 6.14; Bruker Analytical X-ray Instruments Inc., Madison, WI, 2000-2003.

[^1]: ${ }^{1}$ SAINT integration software, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1994.
 ${ }^{1}$ SADABS V2.10, Sheldrick, G.M., University of Göttingen, 2003.
 ${ }^{1}$ SHELXTL program system version 6.14; Bruker Analytical X-ray Instruments Inc., Madison, WI, 2000-2003.

