Supplementary data

Magnetic Water-Soluble Cyano-Bridged

Metal Coordination Nano-polymers.

Yannick Guari,*^a Joulia Larionova,*^a Karine Molvinger,^b Benjamin Folch,^a and Christian Guérin^a

^aLaboratoire de Chimie Moléculaire et Organisation du Solide (LCMOS), UMR 5637,
Université Montpellier II, Place E. Bataillon, 34095 Montpellier cedex 5, France. Fax:
(33) 4 67 14 38 52, e-mail: joulia@univ-montp2.fr; guari@univ-montp2.fr.
^bLaboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique, UMR 5618CNRS ENSCM, 8 rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.

Figure 1S. Chitosan formulae.

Figure 2S. Photograph of the nanocomposite beads 1a-4a along with the respective aqueous colloids 1b-4b.

Figure 3S. UV-Visible spectra of the colloids **1b-4b**. (•) for **1b**, (o) for **2b**, (\blacklozenge) for **3b** and (\Box) for **4b**.

Figure 4S. HRTEM images of sample 1b.

Figure 5S. Thermal variation of the relaxation time fitting with the Arrhenius law.

Figure 6S. Thermal variation of the relaxation time fitting with the Power law, $\tau = \tau_0 [T_g/(T_{max} - T_g)]^z$ giving $T_g = 11.7$ K, and the critical exponent z = 8.9 and $\tau_0 = 5.4 \times 10^{-11}$ s.

Figure 7S. Zero field cooled (ZFC)/ field cooled (FC) magnetization curves for the sample **1a** diluted in eight times. Applied field of 500 Oe.