Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2006
Supplementary information:
1.1 Full list of compounds
1.2 Experimental procedures
1.3 Crystal data footnotes
1.4 Hydrogen bond table for 2 c

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006
1.1 Full list of compounds

1
2
3
4

Name	Abbr.
$[1]^{2+} \cdot 2\left(\mathrm{BF}_{4}\right)$	1 a
$[1]^{2+} \cdot 2 \mathrm{Br}$	1 b
$[1]^{2+} \cdot 2 \mathrm{Cl}$	1 c
$[1]^{2+} \cdot 2\left(\mathrm{CF}_{3} \mathrm{CO}_{2}\right)$	1 d
$[1]^{2+} \cdot 2\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)$	1 e
$[1]^{2+} \cdot 2\left(\mathrm{NO}_{3}\right)$	1 f
$[1]^{2+} \cdot \mathrm{SiF}_{6}$	1 g
$[1]^{2+} \cdot 3 \cdot 3\left(\mathrm{SO}_{4}\right) \cdot 2\left(\mathrm{HSO}_{4}\right)$	1 h
$[2]^{2+} \cdot 2 \mathrm{BF}_{4}$	2 a
$[2]^{2+} \cdot 2 \mathrm{Br}^{2}$	2 b
$[2]^{2+} \cdot \mathrm{HPO}_{4} \cdot 2\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)$	2 c
$[2]^{2+} \cdot 2\left(\mathrm{HSO}_{4}\right)$	2 d
$[2]^{2+} \cdot 2\left(\mathrm{NO}_{3}\right)$	2 e
$[2]^{2+} \cdot \mathrm{SiF}_{6}$ (previously thought to be PF_{6} salt)	2 f
$[2]^{2+} \cdot \mathrm{SiF}_{6}$	2 g
$[2]^{1+} \cdot \mathrm{Cl}^{2}$	2 h
$[3]^{2+} \cdot 2 \mathrm{Br}^{2+}$	3 a
$[3]^{2+} \cdot 2 \mathrm{Cl}^{2}$	3 b
$[3]^{2+} \cdot 2\left(\mathrm{~F}_{3} \mathrm{CCO}_{2}\right)$	3 c
$[3]^{2+} \cdot \mathrm{SiF}_{6}$	3 d
$[3]^{2+} \cdot \mathrm{SO}_{4}$	3 e
$[4]^{2+} \cdot \mathrm{BF}_{4}$	4 a
$[4]^{2+} \cdot \mathrm{Br}^{[4]^{2+} \cdot \mathrm{Cl}^{2}}$	4 b
$[4]^{2+} \cdot\left(\mathrm{F}_{3} \mathrm{CCO}_{2}\right)$	4 c
$[4]^{2+} \cdot \mathrm{H}_{2} \mathrm{PO}_{4}$	4 d
$[4]^{2+} \cdot \mathrm{HSO}_{4}$	4 e
$[4]^{2+} \cdot \mathrm{NO}_{3}$	4 f
$[4]^{2+} \cdot 0 \cdot 5\left(\mathrm{SiF}_{6}\right)$	4 g
	4 h

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

1.2 Experimental procedures

Samples were prepared by recrystallising the relevant amine from an acid solution.

The resulting crystals were mounted on a thin glass fibre using silicon grease and cooled on the diffractometer to 100 K using an Oxford Cryostream low temperature attachment. Approximate unit cell dimensions were determined by the Nonius Collect program ${ }^{1}$ from 5 index frames of width 2° in ϕ using a Nonius ${ }^{\text {Kappa }} \mathrm{CCD}$ diffractometer, with a detector to crystal distance of 30 mm . The Collect program was then used to calculate a data collection strategy to 99.5% completeness for $\theta=27.5^{\circ}$ using a combination of $2^{\circ} \phi$ and ω scans of $10-120 \mathrm{~s} \mathrm{deg}^{-1}$ exposure time (depending on crystal quality). Crystals were indexed using the DENZO-SMN package ${ }^{2}$ and positional data were refined along with diffractometer constants to give the final unit cell parameters. Integration and scaling (DENZO-SMN, Scalepack ${ }^{2}$) resulted in unique data sets corrected for Lorentz and polarisation effects and for the effects of crystal decay and absorption by a combination of averaging of equivalent reflections and an overall volume and scaling correction. Structures were solved using SHELXS-97 ${ }^{3}$ and developed via alternating least squares cycles and difference Fourier synthesis (SHELXL-97 ${ }^{3}$) with the aid of the program X-Seed. ${ }^{4}$ In general all non-hydrogen atoms were modelled anisotropically, while hydrogen atoms are assigned an isotropic thermal parameter 1.2 times that of the parent atom (1.5 for terminal atoms) and allowed to ride. Individual refinement details can be found in the _refine_special_details section of the individual cif files.

1. R. Hooft, ‘Collect', Nonius B.V., Delft, 1998.
2. Z. Otwinowski and W. Minor, in Methods in Enzymology, 276, 1997, pp 307-326. C. W. Carter and
R. M. Sweet (Eds.), Academic Press, New York.
3. G. M. Sheldrick, 'SHELXL-97’, University of Göttingen, 1997.
4. L. J. Barbour, J. Supramol. Chem., 2001, 1, 189..

Supplementary Material (ESI) for Chemical Communications
 This journal is (c) The Royal Society of Chemistry 2006

1.3 Crystal data footnotes

Crystal data for 1a: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{2}, M=283.78$, colourless prism, $0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=11.180(2), b=7.1600(14), c=13.983(3) \AA, \beta=91.27(3)^{\circ}, V=$ 1119.1(4) $\AA^{3}, Z=4, D_{\mathrm{c}}=1.684 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=568$, kappaccd, MoK α radiation, $\lambda=0.71070 \AA, T=$ $100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 7843$ reflections collected, 2567 unique $\left(\mathrm{R}_{\text {int }}=0.0318\right)$. Final GooF $=1.011$, $R 1=0.0285, w R 2=0.0739, R$ indices based on 2250 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right)$, 166 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.193 \mathrm{~mm}^{-1}$.

Crystal data for 1 b : $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}, M=269.98,0.50 \times 0.25 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=13.5054(10), b=7.4498(10), c=9.418(8) \AA, \beta=110.351(6)^{\circ}, V=888.5(8) \AA^{3}, Z=4, D_{\text {c }}$ $=2.018 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=520$, Kappa CCD, MoK α radiation, $\lambda=0.71073 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}$, 1983 reflections collected, 1064 unique $\left(\mathrm{R}_{\text {int }}=0.0521\right)$. Final $G o o F=1.222, R 1=0.1014, w R 2=$ $0.2528, R$ indices based on 1007 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 68 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=9.056 \mathrm{~mm}^{-1}$.
Platon suggests missed symmetry however no suitable higher symmetry structure could be found. The large residual electron density peak may be unrefined solvent/water but attempts to model this failed. Some atoms have been refined isotropically as refining them anisotropically leads to non-positivedefinites. Although the maximum shift/error and R1 and wR2 are large for this compound (due to reasons above), the relative structure of the compound is not in doubt.

Crystal data for 1c: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}, M=181.06,1.00 \times 0.50 \times 0.20 \mathrm{~mm}^{3}$, monoclinic, space group $C 2 / c$ (No. 15), $a=7.3184(6), b=14.5495(9), c=7.8594(6) \AA, \beta=94.794(5)^{\circ}, V=833.93(11) \AA^{3}, Z=4, D_{\text {c }}$ $=1.442 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=376$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=51.9^{\circ}$, 2797 reflections collected, 814 unique ($\mathrm{R}_{\text {int }}=0.0313$). Final $G o o F=1.192, R 1=0.0237, w R 2=$ $0.0565, R$ indices based on 746 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 46 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.705 \mathrm{~mm}^{-1}$.

Crystal data for 1d: $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}, M=336.20,0.30 \times 0.15 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $C 2 / c$ (No. 15), $a=25.649(3), b=8.6558(9), c=11.7964(13) \AA, \beta=102.093(6)^{\circ}, V=2560.9(5) \AA^{3}, Z=8$, $D_{\mathrm{c}}=1.744 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1360$, KAppa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=$ $55.0^{\circ}, 6459$ reflections collected, 2815 unique ($\mathrm{R}_{\text {int }}=0.0569$). Final GooF $=1.087, R 1=0.0495, w R 2$ $=0.0891, R$ indices based on 2213 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 224 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.187 \mathrm{~mm}^{-1}$.

Crystal data for 1e: $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{2}, M=304.13,0.40 \times 0.30 \times 0.25 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=6.6630(2), b=9.8070(6), c=10.1060(6) \AA, \alpha=66.947(3), \beta=73.474(4), \gamma=73.262(4)^{\circ}, V=$ $570.74(5) \AA^{3}, Z=2, D_{\mathrm{c}}=1.770 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=316$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=$ $100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 4490$ reflections collected, 2620 unique $\left(\mathrm{R}_{\text {int }}=0.0307\right)$. Final GooF $=1.056$, $R 1=0.0340, w R 2=0.0751, R$ indices based on 2324 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 204 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.419 \mathrm{~mm}^{-1}$.

Crystal data for 1f: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{6}, M=234.18, \times \times \mathrm{mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=$ $12.6849(14), b=7.9519(6), c=10.3950(10) \AA, \beta=105.817(5)^{\circ}, V=1008.83(17) \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1.542 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=488$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=49.9^{\circ}$, 5968 reflections collected, 1768 unique $\left(\mathrm{R}_{\mathrm{int}}=0.0835\right)$. Final $G o o F=1.866, R 1=0.1472, w R 2=$ $0.4231, R$ indices based on 1405 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 147 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.138 \mathrm{~mm}^{-1}$.
The large R1 and wR2 values may be due to unresolved twinning in the data. The connectivity of the structure is unaffected by this.

Crystal data for 1 g : $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{Si}, M=252.25,0.80 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$, monoclinic, space group $P 2 / n$ (No. 13), $a=5.5242(2), b=11.1775(8), c=7.6086(5) \AA, \beta=90.75(3)^{\circ}, V=469.77(5) \AA^{3}, Z=2, D_{\mathrm{c}}=$ $1.783 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=256$, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 1922$ reflections collected, 1001 unique ($\mathrm{R}_{\text {int }}=0.0245$). Final GooF $=1.063, R 1=0.0369, w R 2=0.0943, R$ indices

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

based on 924 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 82 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.312 \mathrm{~mm}^{-1}$.

The structure can be refined in Pmmn (as suggested by Platon) but R1 $=0.0759$. In the monoclinic solution the anion is slightly offset compared to the cation, giving beta $=90.8(\gg 90$ for an otherwise precise structure). In Pmmn (with beta forced to be 90) the molecule is on a mirror and the offset manifests itself in elongated ellipsoids and the large R1 value. Therefore while the anion fits the Pmmn space group the cation does not therefore we believe the lower symmetry solution is the correct one.

Crystal data for $1 \mathrm{~h}: \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{8} \mathrm{O}_{24} \mathrm{~S}_{5}, M=969.82,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}$ (No. 4), $a=7.5897(15), b=27.591(6), c=19.190(4) \AA, \beta=91.58(3)^{\circ}, V=4016.9(14) \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1.604 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1988$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}$, 23828 reflections collected, 14446 unique $\left(\mathrm{R}_{\text {int }}=0.0867\right)$. Final GooF $=1.027, R 1=0.0729, w R 2=$ $0.1363, R$ indices based on 8507 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 1101 parameters, 1 restraint. Lp and absorption corrections applied, $\mu=0.387 \mathrm{~mm}^{-1}$. Absolute structure parameter $=$ 0.29 (8) (Flack, H. D. Acta Cryst. 1983, A39, 876-881). We were unable to locate hydrogen atoms on SO4, HSO4 and H2O groups so formula deduced on a charge balance basis

Crystal data for 2a: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~B}_{2} \mathrm{~F}_{8} \mathrm{~N}_{2}, M=283.78,0.30 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=7.2396(13), b=8.8215(16), c=9.4429(16) \AA, \alpha=73.712(11), \beta=74.877(9), \gamma=76.677(9)^{\circ}, V$ $=550.70(17) \AA^{3}, Z=2, D_{\mathrm{c}}=1.711 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=284$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T$ $=100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 4105$ reflections collected, 2518 unique $\left(\mathrm{R}_{\text {int }}=0.0730\right)$. Final GooF $=1.005$, $R 1=0.0619, w R 2=0.1097, R$ indices based on 1352 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 166 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.196 \mathrm{~mm}^{-1}$.

Crystal data for 2 b : $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}, M=269.98,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=8.3858(17), b=8.1422(16), c=13.592(3) \AA, \beta=92.82(3)^{\circ}, V=926.9(3) \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1.935 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=520$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}$, 3417 reflections collected, 1784 unique ($\mathrm{R}_{\text {int }}=0.1037$). Final GooF $=1.162, R 1=0.0822, w R 2=$ $0.2037, R$ indices based on 1534 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 93 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=8.680 \mathrm{~mm}^{-1}$. Largest residual electron density peaks are close to the bromines.

Crystal data for 2 c : $\mathrm{C}_{12} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}_{3}, M=510.27,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=10.9056(6), b=13.2510(4), c=15.7992(8) \AA, \alpha=113.296(3), \beta=99.154(3), \gamma=$ $95.774(3)^{\circ}, V=2036.36(16) \AA^{3}, Z=4, D_{\mathrm{c}}=1.664 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=1064$, Kappa CCD, MoK α radiation, λ $=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 16581$ reflections collected, 9285 unique ($\mathrm{R}_{\mathrm{int}}=0.0865$). Final $G o o F=1.004, R 1=0.0604, w R 2=0.1100, R$ indices based on 5912 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 568 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.364 \mathrm{~mm}^{-}$ 1.

Crystal data for 2 d : $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{~S}_{2}, M=304.30,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=7.1298(9), b=8.8359(8), c=10.3489(14) \AA$, $\alpha=65.177(8), \beta=87.006(8), \gamma=77.515(8)^{\circ}, V=$ $577.19(12) \AA^{3}, Z=2, D_{\mathrm{c}}=1.751 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=316$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=$ $100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 4537$ reflections collected, 2640 unique $\left(\mathrm{R}_{\text {int }}=0.0667\right)$. Final GooF=1.038, $R 1=0.0567, w R 2=0.1474, R$ indices based on 2264 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right)$, 168 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.499 \mathrm{~mm}^{-1}$.

Crystal data for 2e: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{7}, M=252.20,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=10.677(2), b=6.8471(18), c=15.621(3) \AA, \beta=108.610(10)^{\circ}, V=1082.2(4) \AA^{3}, Z=4$, $D_{\mathrm{c}}=1.548 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=528$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=$ $52.0^{\circ}, 5985$ reflections collected, 2124 unique ($\mathrm{R}_{\text {int }}=0.1332$). Final GooF $=1.041, R 1=0.0660, w R 2$ $=0.1069, R$ indices based on 1211 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right), 165$ parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.141 \mathrm{~mm}^{-1}$.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Crystal data for 2 f : $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OSi}, M=270.27,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}$ (No. 4), $a=8.9269(11), b=6.0679(10), c=10.4425(15) \AA, \beta=113.210(9)^{\circ}, V=519.86(13) \AA^{3}, Z=2$, $D_{\mathrm{c}}=1.727 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=276$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=$ $50.0^{\circ}, 3030$ reflections collected, 1798 unique ($\mathrm{R}_{\text {int }}=0.0402$). Final GooF $=1.033, R 1=0.0419, w R 2$ $=0.1201, R$ indices based on 1736 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 156 parameters, 3 restraints. Lp and absorption corrections applied, $\mu=0.295 \mathrm{~mm}^{-1}$. Absolute structure parameter $=-$ $0.04(19)$ (Flack, H. D. Acta Cryst. 1983, A39, 876-881). This compound was originally assigned as the PF_{6} salt but further refinement showed that it was in fact the SiF_{6} salt, isomorphous with 2 g . R values from refinement as PF_{6} were: $R 1=0.0436, w R 2=0.1253$.

Crystal data for 2 g : $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{OSi}, M=270.27,0.20 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}$ (No. 4), $a=8.9265(18), b=6.0639(12), c=10.440(2) \AA, \beta=113.15(3)^{\circ}, V=519.59(18) \AA^{3}, Z=2, D_{\mathrm{c}}$ $=1.727 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=276$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}$, 3125 reflections collected, 1960 unique ($\mathrm{R}_{\mathrm{int}}=0.0463$). Final GooF $=1.053, R 1=0.0440, w R 2=$ $0.0999, R$ indices based on 1756 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 154 parameters, 1 restraint. Lp and absorption corrections applied, $\mu=0.295 \mathrm{~mm}^{-1}$. Absolute structure parameter $=-$ 0.1(2) (Flack, H. D. Acta Cryst. 1983, A39, 876-881).

Crystal data for $2 \mathrm{~h}: \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{ClN}_{2}, M=144.60,0.30 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=5.7025(11), b=8.5328(17), c=14.781(3) \AA, V=719.2(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.335$ $\mathrm{g} / \mathrm{cm}^{3}, F_{000}=304$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}, 4119$ reflections collected, 1408 unique ($\mathrm{R}_{\mathrm{int}}=0.0585$). Final $G o o F=1.060, R 1=0.0352, w R 2=0.0675, R$ indices based on 1229 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 118 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.440 \mathrm{~mm}^{-1}$. Absolute structure parameter $=0.01(9)($ Flack, H. D. Acta Cryst. 1983, A39, 876-881).

Crystal data for 3a: $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{~N}_{2}, M=269.98$, orange block, $0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=4.4488(5), b=6.089(5), c=8.701$ (6) $\AA, \alpha=103.616(4), \beta=104.616(5), \gamma=$ $101.392(5)^{\circ}, V=213.2(2) \AA^{3}, Z=1, D_{\mathrm{c}}=2.102 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=130$, Kappa CCD, MoK α radiation, $\lambda=$ $0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}, 1357$ reflections collected, 824 unique $\left(\mathrm{R}_{\text {int }}=0.0943\right)$. Final $G o o F=1.134, R 1=0.0364, w R 2=0.0901, R$ indices based on 806 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 47 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=9.433 \mathrm{~mm}^{-1}$.

Crystal data for 3 b : $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2}, M=181.06$, colourless plate, $0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=4.2850(2), b=5.8053(15), c=8.6259(6) \AA, \alpha=71.035(4), \beta=76.868(5), \gamma=$ $79.631(5)^{\circ}, V=196.30(5) \AA^{3}, Z=1, D_{\mathrm{c}}=1.532 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=94$, Kappa CCD, MoK α radiation, $\lambda=$ $0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 1501$ reflections collected, 875 unique ($\mathrm{R}_{\text {int }}=0.0358$). Final $G o o F=1.062, R 1=0.0209, w R 2=0.0658, R$ indices based on 843 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 47 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.749 \mathrm{~mm}^{-1}$.

Crystal data for 3 c : $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}, M=336.20,0.40 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=5.9661(5), b=16.0900(14), c=7.2186(5) \AA, \beta=101.075(5)^{\circ}, V=680.04(9) \AA^{3}, Z=2$, $D_{\mathrm{c}}=1.642 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=340$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=$ $55.0^{\circ}, 5611$ reflections collected, 1544 unique ($\mathrm{R}_{\text {int }}=0.0714$). Final GooF $=1.134, R 1=0.0825, w R 2$ $=0.2111, R$ indices based on 1293 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 113 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.176 \mathrm{~mm}^{-1}$. R1 possibly high due to twinning.

Crystal data for 3 d : $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{Si}, M=252.25,1.00 \times 0.50 \times 0.20 \mathrm{~mm}^{3}$, triclinic, space group $P-1$ (No. 2), $a=5.5834(11), b=9.4219(19), c=9.6386(19) \AA, \alpha=80.826(7), \beta=89.959(6), \gamma=73.219(6)^{\circ}, V$ $=478.70(16) \AA^{3}, Z=2, D_{\mathrm{c}}=1.750 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=256$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T$ $=100(2) \mathrm{K}, 2 \theta_{\max }=50.0^{\circ}, 3157$ reflections collected, 1681 unique $\left(\mathrm{R}_{\text {int }}=0.0538\right)$. Final GooF=1.040, $R 1=0.0676, w R 2=0.1670, R$ indices based on 1259 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 139 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.306 \mathrm{~mm}^{-1}$. Platon suggests $\mathrm{C} 2 / \mathrm{c}$ as an alternative space group however it was not possible to refine the structure in this space group

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

Crystal data for $3 \mathrm{e}: \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, M=206.22,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (No. 19), $a=6.6270(13), b=7.3642(15), c=18.130(4) \AA, V=884.8(3) \AA^{3}, Z=4, D_{\mathrm{c}}=1.548$ $\mathrm{g} / \mathrm{cm}^{3}, F_{000}=432$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}, 5658$ reflections collected, 1727 unique ($\mathrm{R}_{\text {int }}=0.0614$). Final GooF $=1.045, R 1=0.0375, w R 2=0.0821, R$ indices based on 1508 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 159 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.351 \mathrm{~mm}^{-1}$. Absolute structure parameter $=0.19$ (13) (Flack, H. D. Acta Cryst. 1983, A39, 876-881).

Crystal data for $4 \mathrm{a}: \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BF}_{4} \mathrm{~N}, M=180.94,0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1}$ (No. 4), $a=7.3752(16), b=5.7860(9), c=9.3866(19) \AA, \beta=97.620(11)^{\circ}, V=397.02(13) \AA^{3}, Z=2, D_{\mathrm{c}}=$ $1.514 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=184$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.7^{\circ}$, 2751 reflections collected, 1543 unique ($\mathrm{R}_{\text {int }}=0.0566$). Final GooF $=1.061, R 1=0.0671, w R 2=$ $0.1786, R$ indices based on 1303 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 111 parameters, 1 restraint. Lp and absorption corrections applied, $\mu=0.154 \mathrm{~mm}^{-1}$. Absolute structure parameter $=-$ $0.5(17)$ (Flack, H. D. Acta Cryst. 1983, A39, 876-881).

Crystal data for 4 b : $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{BrN}, M=174.04, \times \times \mathrm{mm}^{3}$, monoclinic, space group $P 2_{1} / m$ (No. 11), $a=$ $6.8425(14), b=5.9749(12), c=8.4158(17) \AA, \beta=91.35(3)^{\circ}, V=343.97(12) \AA^{3}, Z=2, D_{\mathrm{c}}=1.680$ $\mathrm{g} / \mathrm{cm}^{3}, F_{000}=172$, Kappa CCD, MoK α radiation, $\lambda=0.71073 \AA, T=173(2) \mathrm{K}, 2 \theta_{\max }=56.6^{\circ}, 2241$ reflections collected, 894 unique ($\mathrm{R}_{\mathrm{int}}=0.0958$). Final $G o o F=1.104, R 1=0.0763, w R 2=0.1983, R$ indices based on 823 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 64 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=5.869 \mathrm{~mm}^{-1}$.

Crystal data for 4 c : $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{ClN}, M=129.58$, colourless prism, $0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $C c$ (No. 9), $a=15.760(3), b=5.3285(10), c=8.3932(11) \AA, \beta=101.102(11)^{\circ}, V=$ 691.6(2) $\AA^{3}, Z=4, D_{\mathrm{c}}=1.244 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=272$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=$ $100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 2122$ reflections collected, 1486 unique $\left(\mathrm{R}_{\text {int }}=0.0294\right)$. Final GooF $=1.056$, $R 1=0.0351, w R 2=0.0774, R$ indices based on 1375 reflections with $\mathrm{I}>2$ sigma(I) (refinement on F^{2}), 74 parameters, 2 restraints. Lp and absorption corrections applied, $\mu=0.446 \mathrm{~mm}^{-1}$. Absolute structure parameter $=0.06(9)($ Flack, H. D. Acta Cryst. 1983, A39, 876-881). Checks showed an 87% fit in C2/c. The aryl groups obey this symmetry but the ammonium groups (which form ordered polar stacks in Cc) do not, therefore we believe that Cc is the correct space group.

Crystal data for 4 d : $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~F}_{3} \mathrm{NO}_{2}, M=207.15,1.00 \times 0.50 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / n$ (No. 14), $a=10.334(2), b=8.8820(18), c=19.973(4) \AA, \beta=98.07(3)^{\circ}, V=1815.1(6) \AA^{3}, Z=8, D_{\mathrm{c}}=$ $1.516 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=848$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=52.0^{\circ}$, 10454 reflections collected, 3551 unique ($\mathrm{R}_{\mathrm{int}}=0.0500$). Final $G o o F=1.039, R 1=0.0422, w R 2=$ $0.0914, R$ indices based on 2876 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 254 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.148 \mathrm{~mm}^{-1}$.

Crystal data for $4 \mathrm{e}: \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{5} \mathrm{P}, M=209.14,0.40 \times 0.30 \times 0.20 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / n$ (No. 14), $a=9.6419(19), b=21.039(4), c=10.100(2) \AA, \beta=110.639(3)^{\circ}, V=1917.3(7) \AA^{3}, Z=8, D_{\text {c }}$ $=1.449 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=880$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=50.0^{\circ}$, 10584 reflections collected, 3314 unique ($\mathrm{R}_{\mathrm{int}}=0.0876$). Final $G o o F=1.061, R 1=0.1229, w R 2=$ $0.2944, R$ indices based on 2199 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on F^{2}), 204 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.279 \mathrm{~mm}^{-1}$. Due to poor data quality and disorder, the carbon atoms were refined isotropically. The maximum shift/error is also slightly large but could not be reduced by further refinement and is probably an artefact of the disorder/poor data quality. Although the residuals are high the connectivity of the structure is not in doubt.

Crystal data for $4 \mathrm{f}: \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{~S}, M=191.20,1.00 \times 0.50 \times 0.20 \mathrm{~mm}^{3}$, orthorhombic, space group $P c a 2_{1}$ (No. 29), $a=14.2459(7), b=9.1043(6), c=12.6132(9) \AA, V=1635.92(18) \AA^{3}, Z=8, D_{\mathrm{c}}=1.553$ $\mathrm{g} / \mathrm{cm}^{3}, F_{000}=800$, Kappa CCD, MoK α radiation, $\lambda=0.71073 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=55.0^{\circ}, 7565$ reflections collected, 3063 unique ($\mathrm{R}_{\text {int }}=0.0401$). Final GooF $=1.051, R 1=0.0316, w R 2=0.0774, R$ indices based on 2846 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 241 parameters, 1 restraint. Lp

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

and absorption corrections applied, $\mu=0.370 \mathrm{~mm}^{-1}$. Absolute structure parameter $=0.03(9)($ Flack, H. D. Acta Cryst. 1983, A39, 876-881). Platon checks show that there may be some additional symmetry but this is thought to be pseudosymmetry.

Crystal data for $4 \mathrm{~g}: \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}, M=156.14$, not known \times not known \times not known mm^{3}, orthorhombic, space group Pcab (No. 61), $a=9.1787$ (3), $b=9.9711$ (4), $c=16.0278$ (4) $\AA, V=1466.89$ (8) $\AA^{3}, Z=8$, $D_{\mathrm{c}}=1.414 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=656$, Kappa CCD, MoK α radiation, $\lambda=0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=$ $52.0^{\circ}, 2621$ reflections collected, 1415 unique ($\mathrm{R}_{\text {int }}=0.0148$). Final $G o o F=1.119, R 1=0.0332, w R 2$ $=0.0895, R$ indices based on 1315 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right), 113$ parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.115 \mathrm{~mm}^{-1}$.

Crystal data for 4h: $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}, M=366.39$, colourless prism, $0.50 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$, monoclinic, space group $P 2_{1} / c$ (No. 14), $a=9.2142(6), b=5.8046(3), c=14.4759(11) \AA, \beta=$ $92.110(3)^{\circ}, V=773.71(9) \AA^{3}, Z=2, D_{\mathrm{c}}=1.573 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=380$, kappaccd, $\mathrm{MoK} \alpha$ radiation, $\lambda=$ $0.71070 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=54.9^{\circ}, 5710$ reflections collected, 1768 unique ($\mathrm{R}_{\text {int }}=0.0369$). Final $G o o F=1.039, R 1=0.0320, w R 2=0.0725, R$ indices based on 1526 reflections with $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ (refinement on F^{2}), 116 parameters, 0 restraints. Lp and absorption corrections applied, $\mu=0.226 \mathrm{~mm}^{-}$

Supplementary Material (ESI) for Chemical Communications
This journal is (c) The Royal Society of Chemistry 2006
1.5 Hydrogen bond table for 2c

D	H	A	D-H	H \cdots A	D...	D-H \cdots A	symop
N1	H1A	O17	0.91	1.87	2.728(4)	156	$1-x, 1-y,-z$
N1	H1B	O 17	0.91	1.9	2.751(3)	155	$-1+x,-1+y, z$
N1	H1C	O5	0.91	1.85	$2.750(4)$	171	1-x,-y,-z
N2	H2A	O22	0.91	1.93	2.777(3)	155	$x,-1+y,-1+z$
N2	H2B	O1	0.91	1.97	2.840(4)	160	
N2	H2B	O4	0.91	2.47	3.180(4)	135	
N2	H2C	O10	0.91	1.91	2.779(4)	158	1-x, 1-y, -z
N3	H3A	O6	0.91	1.95	2.826(4)	162	$2-x, 1-y,-z$
N3	H3B	O16	0.91	1.77	$2.680(4)$	178	x, $\mathrm{y},-1+\mathrm{z}$
N3	H3C	O6	0.91	1.91	$2.795(3)$	164	x, $\mathrm{y},-1+\mathrm{z}$
O3	H3O	O5	0.99	1.79	2.544(3)	130	
N4	H4A	O2	0.91	1.77	2.685(3)	176	
N4	H4B	O3	0.91	1.99	2.895(4)	170	2-x,1-y,-z
N4	H4C	O11	0.91	2.57	3.028(3)	112	$2-x, 1-y,-z$
N4	H4C	O20	0.91	2.05	$2.930(4)$	161	$2-x, 1-y,-z$
O4	H4O	O9	0.91	1.59	2.459(3)	159	
N5	H5A	O9	0.91	1.87	2.778(4)	174	1-x, 1-y, -z
N5	H5B	O10	0.91	2.05	2.914(3)	157	
N5	H5C	O2	0.91	1.82	2.723(4)	173	
N6	H6A	O14	0.91	2.04	2.904(4)	159	$1-x, 1-y,-z$
N6	H6A	O16	0.91	2.53	3.229(3)	133	$1-x, 1-y,-z$
N6	H6B	O16	0.91	1.81	2.716 (3)	177	x, $\mathrm{y},-1+\mathrm{z}$
N6	H6C	O24	0.91	1.8	2.691(4)	167	$\mathrm{x}, \mathrm{y},-1+\mathrm{z}$
N7	H7A	O22	0.91	1.76	2.654(3)	168	$1-x, 2-y, 1-z$
N7	H7B	O21	0.91	1.97	2.843(3)	161	
N7	H7C	O 12	0.91	1.84	2.698(3)	157	
O7	H7O	O13	0.81	1.8	2.591(3)	167	
N8	H8A	O6	0.91	1.93	2.842(4)	175	$\mathrm{x}, 1+\mathrm{y}, \mathrm{z}$
N8	H8B	O18	0.91	1.72	2.621(3)	173	
N8	H8C	O15	0.91	1.86	2.774(3)	178	$2-x, 2-y, 1-z$
O8	H8O	O24	0.97	1.6	2.562(3)	167	1-x,1-y,1-z
O11	H11O	O13	0.91	1.82	$2.726(3)$	170	
O14	H14O	O12	1.01	1.6	2.591(3)	166	
O19	H190	O1	0.94	1.68	2.537(3)	150	$2-x, 1-y,-z$
O20	H20O	O 10	0.96	1.7	2.638(3)	163	
C4	H4	O4	0.95	2.51	3.198(4)	130	
C6	H6	O23	0.95	2.43	3.187(4)	137	$1-x, 1-y, 1-z$
C14	H14	O9	0.95	2.56	3.287(4)	134	$1-x, 1-y,-z$
C17	H17	O5	0.95	2.58	3.340 (4)	137	$2-x, 1-y,-z$
C18	H18	O20	0.95	2.55	3.438(4)	157	

