Reaction of arynes, *N***-heteroaromatics and nitriles**

Masilamani Jeganmohan and Chien-Hong Cheng*

Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan

E-mail: chcheng@mx.nthu.edu.tw

Electronic Supplementary Information (ESI)

Table of Contents

Page S2	Experimental Section
Page S2 – S8	¹ H, ¹³ C NMR and HRMS Data
Page S8 – S9	NOE Experimental Studies
Page S10 – S50	Copy of ¹ H and ¹³ C NMR Spectra

Experimental section:

General procedure for the reaction of arynes, *N*-heteroaromatics and nitriles:

A 25 mL round-bottomed side-arm flask containing CsF (2.00 mmol) was evacuated and purged with nitrogen gas three times. To the flask were then added benzyne precursor (1) (1.00 mmol), isoquinoline (1.00 mmol) and CH₃CN (3.0 ml) via syringes. The reaction mixture was allowed to stir at 50 °C for 8 h. At the end of the reaction, the reaction mixture was diluted with CH₂Cl₂, filtered through Celite and silica gel, and the filtrate was concentrated. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give pure **4**. Products **4i-k** and **4o-r** were synthesized according to similar procedures by using quinolines (**2b-c**) and pyridine derivatives (**2d-g**) as the nucleophilic reagents, respectively. For the synthesis of products **4l-n**, similar procedures were also followed, but in these cases 1.0 ml of the corresponding substituted acetonitriles **3c-e** were used as solvent as well as the reactant.

Spectral data and copy of ¹H and ¹³C NMR spectra of all compounds are listed below. For products **4l-n**, diastereomers were observed in *ca.* 1:1 ratios. In the **4l** and **4m** cases, we were able to isolate one pure diastereoisomeric form using column chromatography. The spectral data and the copy of ¹H and ¹³C NMR spectra of these compounds **4l** and **4m** were provided. In addition, the copy of ¹H NMR spectra of 1:1 diastereoisomeric mixture of these compounds also provided.

(2-Phenyl-1,2-dihydro-1-isoquinolinyl)methyl cyanide (4a): Pale yellow viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 7.35 (t, J = 7.0 Hz, 2 H), 7.28 - 7.25 (m, 1 H), 7.20 (t, J = 5.0 Hz, 2 H), 7.12 (d, J = 8.0 Hz, 1 H), 7.07 (d, J = 8.0 Hz, 2 H), 7.02 (t, J = 8.0 Hz, 1 H), 6.56 (d, J = 7.5 Hz, 1 H), 5.96 (d, J = 7.0 Hz, 1 H), 5.39 (t, J = 7.0 Hz, 1 H), 2.82 (dd, J = 16.5, 8.0 Hz, 1 H), 2.69 (dd, J = 16.5, 4.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.2, 130.8, 129.7, 128.6, 127.8, 127.5, 126.4, 126.3, 123.9,

122.2, 117.8, 116.5, 105.8, 57.0, 20.9; HRMS: calcd for C₁₇H₁₄N₂ 246.1157, found 246.1156.

(2-Phenyl-1,2-dihydro-1-isoquinolinyl)methyl cyanide-d₃ (4b): Pale yellow viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 7.36 – 7.33 (m, 2 H), 7.28 - 7.25 (m, 1 H), 7.20 - 7.18 (m, 2 H), 7.12 (d, *J* = 8.0 Hz, 1 H), 7.06 (d, *J* = 8.5 Hz, 1 H), 7.03 (t, *J* = 7.0 Hz, 1 H), 6.56 (dd, *J* = 7.0, 1.5 Hz, 1 H), 5.96 (d, *J* = 7.0 Hz, 1 H), 5.38 (s, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.1, 130.8, 129.7, 129.6, 128.6, 127.8, 127.4, 126.4, 126.3, 123.9, 122.1, 117.8, 116.4, 105.7, 56.9; HRMS: calcd for C₁₇H₁₂D₃N₂ 249.1345, found 249.1344.

[2-(3,4-Dimethylphenyl)-1,2-dihydro-1-isoquinolinyl]methyl cyanide (4c): Pale yellow viscous oil; ¹H NMR (600 MHz, CDCl₃): δ 7.10 – 7.08 (m, 3 H), 7.02 – 7.00 (m, 2 H), 6.77 – 6.73 (m, 2 H), 6.46 (dd, *J* = 7.2, 1.2 Hz, 1 H), 5.81 (d, *J* = 7.2 Hz, 1 H), 5.27 (t, *J* = 1.2 Hz, 1 H), 2.72 (dd, *J* = 16.2, 8.4 Hz, 1 H), 2.59 (dd, *J* = 16.2, 5.4 Hz, 1 H), 2.19 (s, 3 H), 2.13(s, 3 H); ¹³C NMR (150 MHz, CDCl₃): δ 142.3, 137.9, 130.9, 130.6, 128.5, 128.3, 127.2, 126.2, 126.1, 123.7, 118.2, 117.9, 114.2, 104.7, 57.3, 20.8, 20.1, 18.8; HRMS: calcd for C₁₉H₁₈N₂ 274.1470, found 274.1470.

[2-(2,3-Dihydro-1*H*-5-indenyl)-1,2-dihydro-1-isoquinolinyl]methyl cyanide (4d): Pale yellow viscous oil; ¹H NMR (600 MHz, CDCl₃): δ 7.10 – 7.01 (m, 5 H), 6.88 (d, *J* = 1.8 Hz, 1 H), 6.78 (d, *J* = 8.4 Hz, 1 H), 6.45 (d, *J* = 7.2 Hz, 1 H), 5.81 (d, *J* = 7.2 Hz, 1 H), 5.28 (t, *J* = 1.2 Hz, 1 H), 2.83 – 2.73 (m, 4 H), 2.71 (dd, *J* = 16.2, 8.4 Hz, 1 H), 2.61 (dd, *J* = 16.2, 4.8 Hz, 1 H), 2.01 – 1.99 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃): δ 145.9, 143.1, 138.3, 130.9, 128.5, 128.4, 127.2, 126.2, 126.1, 125.1, 123.7, 117.9, 115.2, 113.2, 104.7, 57.6, 33.1, 32.0, 25.7, 20.1; HRMS: calcd for C₂₀H₁₈N₂ 286.1470, found 286.1469.

[2-(1,3-Benzodioxol-5-yl)-1,2-dihydro-1-isoquinolinyl]methyl cyanide (4e): Pale yellow viscous oil; ¹H NMR (600 MHz, CDCl₃): δ 7.26 – 7.23 (m, 1 H), 7.18 – 7.14 (m, 2 H), 7.10 (d, J = 7.8 Hz, 1 H), 6.76 (d, J = 8.6 Hz, 1 H), 6.65 (d, J = 2.4 Hz, 1 H), 6.56 (dd, J = 8.4, 2.4 Hz, 1 H), 6.42 (dd, J = 7.4, 1.8 Hz, 1 H), 5.94 – 5.88 (m, 3 H), 5.27 – 5.25 (m, 1 H), 2.74 - 2.66 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃): δ 148.7, 143.4, 139.9, 130.8, 128.7, 128.6, 127.1, 126.2, 126.1, 123.8, 117.9, 110.4, 108.5, 104.9, 101.4, 100.2, 58.4, 21.0; HRMS: calcd for C₁₈H₁₄N₂O₂ 290.1055, found 290.1055.

[2-(3,4-Difluorophenyl)-1,2-dihydro-1-isoquinolinyl]methyl cyanide (4f): Pale yellow viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 7.28 (t, J = 7.0 Hz, 1 H), 7.20 (t, J = 8.0 Hz, 1 H), 7.17 - 7.10 (m, 3 H), 6.89 – 6.85 (m, 1 H), 6.80 – 6.77 (m, 1 H), 6.44 (dd, J = 7.0, 1.5 Hz, 1 H), 6.01 (d, J = 7.5 Hz, 1 H), 5.29 (t, J = 6.5 Hz, 1 H), 2.75 – 2.66 (m, 2 H); ¹³C NMR (125 MHz, CDCl₃): δ 151.8 (d), 149.8 (d), 146.9 (d), 145.0 (d), 141.4 (d), 130.3, 128.8, 127.4, 127.1, 126.8, 126.1, 124.2, 118.0, 117.9, 117.63, 111.9 (q), 107.1, 106.3, 106.1, 57.6, 21.18; HRMS: calcd for C₁₇H₁₂F₂N₂ 282.0969, found 282.0965.

[2-(5,8-Dihydro-2-naphthalenyl)-1,2-dihydro-1-isoquinolinyl]methyl cyanide (4g): Pale yellow viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 8.5 Hz, 1 H), 7.76 (dd, J = 7.5, 2.0 Hz, 1 H), 7.46 (t, J = 8.0 Hz, 1 H), 7.37 – 7.32 (m, 3 H), 7.30 – 7.21 (m, 1 H), 7.25 – 7.19 (m, 3 H), 7.15 (d, J = 7.5 Hz, 1 H), 6.68 (d, J = 7.5 Hz, 1 H), 6.03 (d, J = 8.0 Hz, 1 H), 5.53 (t, J = 4.5 Hz, 1 H), 2.87 (dd, J = 17.0, 8.0 Hz, 1 H), 2.78 (dd, J = 16.0, 5.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 141.7, 134.2, 130.7, 129.7, 129.4, 128.7, 127.9, 127.6, 127.4, 126.9, 126.5, 126.3, 124.4, 123.9, 117.9, 117.4, 112.2, 106.2, 57.2, 20.9; HRMS: calcd for C₂₁H₁₆N₂ 296.1313, found 296.1313.

[2-(3-Methoxyphenyl)-1,2-dihydro-1-isoquinolinyl]methyl cyanide (4h): Pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃): δ 7.27 – 7.18 (m, 4 H), 7.10 (d, *J* = 7.6 Hz, 1 H), 6.66 (d, *J* = 8.0 Hz, 1 H), 6.58 (s, 1 H), 6.54 (t, *J* = 7.6 Hz, 2 H), 5.97 (d,

J = 7.2 Hz, 1 H), 5.37 (t, J = 7.2 Hz, 1 H), 3.81 (s, 3 H), 2.80 (dd, J = 16.4, 8.0 Hz, 1 H), 2.67 (dd, J = 17.2, 5.6 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃): δ 160.9, 145.5, 130.7, 130.4, 128.7, 127.7, 127.6, 126.4, 126.3, 123.9, 117.8, 108.8, 107.1, 105.9, 103.3, 57.0, 55.4, 20.9; HRMS: calcd for C₁₈H₁₆N₂O 276.1263, found 276.1261.

(1-Phenyl-1,2-dihydro-2-quinolinyl)methyl cyanide (4i): Pale yellow oil; ¹H NMR (600 MHz, CDCl₃): δ 7.37 - 7.16 (m, 4 H), 7.16 - 7.03 (m, 3 H), 6.83 - 6.76 (m, 1 H), 6.65 (d, J = 9.0 Hz, 1 H), 5.86 (dd, J = 9.6, 5.4 Hz, 1 H), 4.80 (dd, J = 12.0, 6.0 Hz, 1 H), 2.60 - 2.52 (m, 2 H); ¹³C NMR (150 MHz, CDCl₃): δ 146.2, 140.5, 129.7, 128.8, 127.4, 127.2, 124.7, 124.2, 123.3, 121.6, 120.3, 118.0, 117.5, 56.9, 23.6; HRMS: calcd for C₁₇H₁₄N₂ 246.1157, found 246.1155.

2-(1,2-dihydro-1-(3,4-dimethylphenyl)quinolin-2-yl)acetonitrile (**4j**): Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.17 (d, J = 8.0 Hz, 1 H), 7.07 – 7.00 (m, 4 H), 6.99 (t, J = 7.2 Hz, 1 H), 6.80 – 6.76 (m, 2 H), 5.86 (dd, J = 9.6, 5.4 Hz, 1 H), 4.82 – 4.79 (m, 1 H), 2.65 – 2.52 (m, 2 H), 2.28 (s, 3 H), 2.27 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 141.6, 138.3, 133.9, 130.9, 128.8, 127.3, 126.7, 122.9, 122.2, 121.0, 119.3, 117.5, 116.6, 57.3, 24.0, 19.9, 19.2; HRMS: calcd for C₁₉H₁₈N₂ 274.1470, found 274.1475.

2-(1,2-dihydro-6-methoxy-1-phenylquinolin-2-yl)acetonitrile (4k): Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.32 - 7.26 (m, 2 H), 7.17 (d, *J* = 8.4 Hz, 2 H), 7.05 (t, *J* = 7.2 Hz, 1 H), 6.92 (d, *J* = 6.8 Hz, 1 H), 6.74 (s, 1 H), 6.71 (d, *J* = 8.0 Hz, 1 H), 6.30 (d, *J* = 9.6 Hz, 1 H), 5.92 (dd, *J* = 9.2, 5.6 Hz, 1 H), 4.75 (q, *J* = 5.6 Hz, 1 H), 3.77 (s, 3 H), 2.55 (d, *J* = 7.6 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4, 147.8, 132.9, 129.4, 126.9, 125.6, 123.2, 123.1, 121.9, 121.8, 117.7, 115.1, 111.4, 56.8, 55.6, 22.8; HRMS: calcd for C₁₈H₁₆N₂O 276.1263, found 276.1267.

1-(2-Phenyl-1,2-dihydro-1-isoquinolinyl)ethyl cyanide (4l) (one pure diastereoisomeric form): Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.34 - 7.25

(m, 4 H), 7.21 - 7.04 (m, 5 H), 6.66 (d, J = 7.2 Hz, 1 H), 5.98 (d, J = 7.2 Hz, 1 H), 5.19 (t, J = 7.2 Hz, 1 H), 3.16 (q, J = 15.2, 7.6 Hz, 1 H), 1.16 (d, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 143.2, 131.8, 128.7, 128.1, 127.5, 127.1, 126.4, 126.0, 123.5, 122.3, 117.5, 116.6, 105.5, 57.0, 20.5, 11.5; HRMS: calcd for C₁₈H₁₆N₂ 260.1313, found 260.1311.

(2-Phenyl-1,2-dihydro-1-isoquinolinyl)methyl cyanide (4m) (one pure diastereoisomeric form): Pale yellow viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 7.35 (t, *J* = 7.0 Hz, 2 H), 7.25 (t, *J* = 6.0 Hz, 2 H), 7.19 (t, *J* = 8.5 Hz, 2 H), 7.15 (d, *J* = 7.5 Hz, 2 H), 7.08 (d, *J* = 7.0 Hz, 1 H), 7.04 (t, *J* = 7.0 Hz, 1 H), 6.92 (d, *J* = 8.0 Hz, 2 H), 6.82 (t, *J* = 7.5 Hz, 1 H), 6.65 (d, *J* = 7.0 Hz, 1 H), 6.28 (d, *J* = 7.5 Hz, 1 H), 6.02 (d, *J* = 17.0 Hz, 1 H), 5.43 (dd, *J* = 8.5, 1.5 Hz, 1 H), 4.21 (d, *J* = 9.0 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 145.1, 132.4, 131.1, 129.4, 128.9, 128.6, 128.5, 128.3, 128.2, 128.1, 127.4, 125.3, 124.96, 123.5, 122.4, 120.5, 117.8, 107.2, 65.1, 39.9; HRMS: calcd for C₂₃H₁₈N₂ 322.1470, found 322.1471.

(2-Phenyl-1,2-dihydro-1-isoquinolinyl)(2-thienyl)methyl cyanide (4n) (1:1 diastereoisomeric mixture form): Pale yellow viscous oil; ¹H NMR (500 MHz, CDCl₃): δ 7.36 (t, J = 8.0 Hz, 2 H), 7.32 (t, J = 8.0 Hz, 2 H), 7.24 (m, 4 H), 7.17 – 7.11 (m, 2 H), 7.04 (d, J = 12.0 Hz, 2 H), 6.97 (t, J = 8.5 Hz, 2 H), 6.89 (t, J = 7.0 Hz, 1 H), 6.85 (t, J = 5.0 Hz, 1 H), 6.67 (d, J = 17.0 Hz, 2 H), 6.63 (dd, J = 8.0, 2.0 Hz, 2 H), 6.52 (d, J = 8.5 Hz, 1 H), 6.50 (d, J = 7.5 Hz, 1 H), 6.20 (d, J = 7.0, 1.5 Hz, 1 H), 6.07 (d, J = 7.0 Hz, 1 H), 5.60 (d, J = 8.5 Hz, 1 H), 5.29 (d, J = 7.5 Hz, 1 H), 4.50 (d, J = 8.5 Hz, 1 H), 4.45 (d, J = 9.0 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.96, 134.2, 133.9, 130.9, 130.8, 129.4, 129.0, 128.8, 128.1, 128.0, 127.8, 127.2, 126.9, 126.2, 125.9, 125.1, 123.9, 123.6, 122.5, 122.1, 118.9, 117.9, 117.1, 116.91, 107.9, 107.1, 65.6, 65.4, 34.9, 34.9; HRMS: calcd for C₂₁H₁₆N₂S 328.1034, found 328.1032.

(1-Phenyl-1,2-dihydro-2-pyridinyl)methyl cyanide (40) : Pale yellow oil; ¹H

NMR (500 MHz, CDCl₃): δ 7.32 (dd, J = 9.0, 2.5 Hz, 2 H), 7.05 - 7.01 (t, J = 8.5 Hz, 3 H), 6.47 (d, J = 7.5 Hz, 1 H), 6.19 (dd, J = 9.5, 5.5 Hz, 1 H), 5.50 - 5.41 (m, 2 H), 4.96 - 4.92 (m, 1 H), 2.70 (dd, J = 16.0, 7.5 Hz, 1 H), 2.52 (dd, J = 16.5, 5.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.5, 129.6, 128.2, 124.7, 122.5, 117.8, 116.8, 113.1, 103.9, 52.9, 19.7; HRMS: calcd for C₁₃H₁₂N₂ 196.1000, found 196.0999.

(1,4-Diphenyl-1,2-dihydro-2-pyridinyl)methyl cyanide (4p): Pale yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.48 - 7.46 (m, 2 H), 7.38 - 7.34 (m, 4 H), 7.33 - 7.31 (m, 1 H), 7.09 - 7.04 (m, 3 H), 6.64 (d, *J* = 8.5 Hz, 1 H), 5.82 (dd, *J* = 8.0, 2.5 Hz, 1 H), 5.11 (dd, *J* = 7.5, 1.5 Hz, 1 H), 5.02 (dd, *J* = 3.0, 1.5 Hz, 1 H), 2.84 (dd, *J* = 16.5, 7.5 Hz, 1 H), 2.62 (dd, *J* = 16.5, 5.0 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.1, 138.4, 136.9, 129.6, 128.9, 128.5, 127.9, 126.1, 122.62, 117.7, 116.7, 108.6, 104.5, 53.4, 19.7; HRMS: calcd for C₁₉H₁₆N₂ 272.1313, found 272.1313.

(1,5-Diphenyl-1,2-dihydro-2-pyridinyl)methyl cyanide (4q): Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 7.38 – 7.09 (m, 10 H), 6.91 (s, 1 H), 6.75 (d, *J* = 8.0 Hz, 1 H), 6.73 (dd, *J* = 5.2, 1.2 Hz, 1 H), 5.95 – 5.05 (m, 1 H), 2.79 (dd, *J* = 16.8, 8.0 Hz, 1 H), 2.70 (dd, *J* = 16.2, 4.5 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 144.8, 137.9, 129.9, 129.0, 127.5, 126.3, 125.9, 125.5, 124.3, 123.3, 119.2, 117.6, 114.3, 53.3, 20.9; HRMS: calcd for C₁₉H₁₆N₂ 272.1313, found 272.1312.

(1,3-Diphenyl-1,2-dihydro-2-pyridinyl)methyl cyanide (4q'): Pale yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.41 – 7.31 (m, 7 H), 7.23 - 7.21 (m, 2 H), 7.07 (t, J =7.0 Hz, 1 H), 6.58 – 6.55 (m, 2 H), 5.67 (t, J = 6.0 Hz, 1 H), 5.56 – 5.54 (m, 1 H), 2.90 (dd, J = 17.0, 8.0 Hz, 1 H), 2.48 (dd, J = 17.0, 4.5 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 144.9, 137.2, 129.5, 128.90, 127.7, 127.2, 124.7, 123.5, 123.1, 119.9, 118.6, 118.1, 105.7, 55.7, 18.6; HRMS: calcd for C₁₉H₁₆N₂ 272.1313, found 272.1313.

(1,6-Diphenyl-1,2-dihydro-2-pyridinyl)methyl cyanide (4r): Pale yellow oil; ¹H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 8.0 Hz, 2 H), 7.22 (t, J = 7.5 Hz, 2 H), 7.19 – 7.16 (m, 1 H), 7.13 (d, J = 8.5 Hz, 2 H), 7.08 (d, J = 9.0 Hz, 2 H), 6.92 (t, J = 7.5 Hz, 1 H), 6.30 (dd, J = 9.0, 5.5 Hz, 1 H), 6.12 (d, J = 4.5 Hz, 1 H), 5.40 (dd, J = 9.0, 7.0 Hz, 1 H), 4.81 – 4.77 (m, 1 H), 2.80 (dd, J = 17.0, 9.5 Hz, 1 H), 2.46 (dd, J = 16.5, 4.0 Hz, 1 H); ¹³C NMR (125 MHz, CDCl₃): δ 146.4, 139.9, 136.9, 128.8, 128.4, 128.2, 127.6, 124.9, 123.4, 123.3, 118.5, 115.6, 109.2, 58.4, 20.9; HRMS: calcd for C₁₉H₁₆N₂ 272.1313, found 272.1315.

The regiochemistry of compounds **4g** and **4h** was established by ¹H NMR NOE experiments. For example, selective irradiation of the H_a proton at δ 7.35 in **4g** caused 1.47% enhancement of the H_b proton of the isoquinoline ring at δ 6.68 as well as 1.97 % enhancement in H_c proton. Selective irradiation of the H_b proton at δ 6.68 caused 2.79% enhancement of the H_a proton at δ 7.35. Similar result was obtained for **4h** as shown below. These NOE results strongly confirm the structures of **4g** and **4h**.

Procedure for cycloaddition reaction of 1,2-dihydropyridine (40) with *N*-phenyl-maleimide (9):

A 25 mL round-bottomed side-arm flask containing *N*-phenyl-maleimide (9) (1.00 mmol) was evacuated and purged with nitrogen gas three times. To the flask were then added (1-Phenyl-1,2-dihydro-2-pyridinyl)methyl cyanide (40) (1.00 mmol) and toluene (3.0 mL) via syringe. The reaction mixture was allowed to stir at 80 °C for 6 h. The crude residue was purified through a silica gel column using hexane and ethyl acetate as eluent to give pure **10**.

Compound 10:

Pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃): δ 7.47 – 7.31 (m, 5 H), 7.19 (d, J = 6.0 Hz, 2 H), 6.99 - 6.87 (m, 3 H), 6.75 (t, J = 8.0 Hz, 1 H), 6.51 (t, J = 7.2 Hz, 1 H), 5.05 (t, J = 9.0 Hz, 1 H, He), 3.81 (m, 2 H, Ha and Hb), 3.43 (dd, J = 8.0, 4.0 Hz, 1 H, Hd), 3.10 (dd, J = 8.0, 2.4 Hz, 1 H, Hc), 2.73 (dd, J = 17.6, 3.2 Hz, 1 H), 2.33 (dd, J = 10.0, 3.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃): δ 175.9, 175.2, 144.6, 133.3, 131.4, 130.5, 129.9, 129.0, 128.7, 126.2, 119.5, 116.8, 113.8, 55.9, 48.9, 41.8, 40.9, 36.2, 21.7; HRMS (EI): calcd for C₂₃H₁₉N₃O₂ 369.1477, found 369.1475.

Chemical shifts of protons Ha-e in compound **10** were assigned by homo-decoupling experiments, while the stereochemistry of compound **10** was determined by NOE experiments. For example, selective irradiation of Ha at δ 3.81 in **10** caused 3.08% enhancement of Hc at δ 3.10. Selective irradiation of Hc at δ 3.10 caused 6.05% enhancement of the Ha and Hb at δ 3.81 as well as 2.78% enhancement of Hd at δ 3.43. Selective irradiation of Hd at δ 3.43 caused 2.08% enhancement of He at δ 5.05 as well as 2.42% enhancement of Hc at δ 3.10.

¹H NMR spectrum of compound **4a**:

¹³C NMR spectrum of compound **4a**:

¹H NMR spectrum of compound **4b**:

¹H NMR spectrum of compound **4c**:

¹³C NMR spectrum of compound **4c**:

¹³C NMR spectrum of compound **4d**:

¹H NMR spectrum of compound **4e**:

¹³C NMR spectrum of compound **4e**:

¹H NMR spectrum of compound **4f**:

¹³C NMR spectrum of compound **4f**:

¹H NMR spectrum of compound **4g**:

¹H NMR spectrum of compound **4h**:

¹³C NMR spectrum of compound **4h**:

S25

¹H NMR spectrum of compound **4i**:

¹³C NMR spectrum of compound **4i**:

S27

¹H NMR spectrum of compound **4j**:

¹³C NMR spectrum of compound **4j**:

¹H NMR spectrum of compound **4k**:

¹³C NMR spectrum of compound **4k**:

¹H NMR spectrum of compound **4I** (one pure diastereoisomeric form):

¹H NMR spectrum of compound **4m** (one pure diastereoisomeric form):

 $^{13}\mathrm{C}$ NMR spectrum of compound **4m** (one pure diasteroisomeric form):

¹³C NMR spectrum of compound **4n** (1:1 diastereoisomeric mixture form):

¹H NMR spectrum of compound **40**:

¹³C NMR spectrum of compound **40**:

¹H NMR spectrum of compound **4p**:

¹³C NMR spectrum of compound **4p**:

¹³C NMR spectrum of compound **4q**:

¹H NMR spectrum of compound **4q'**:

¹³C NMR spectrum of compound **4q'**:

¹H NMR spectrum of compound **4r**:

¹³C NMR spectrum of compound **4r**:

¹H NMR spectrum of compound **10**:

