SUPPORTING INFORMATION

Convenient, scalable and flexible method for the preparation of imidazolium salts with previously inaccessible substitution patterns

Alois Fürstner,* Manuel Alcarazo, Vincent César and Christian W. Lehmann

Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr Email: fuerstner@mpi-muelheim.mpg.de

General: All reactions were carried out in flame-dried glassware under Ar. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar: THF, Et₂O (Mg-anthracene), CH₂Cl₂ (P₄O₁₀), MeCN, Et₃N (CaH₂), MeOH (Mg), DMF (Desmodur[®], dibutyltin dilaurate), hexane, toluene (Na/K). Flash chromatography: Merck silica gel 60 (230-400 mesh). IR: Nicolet FT-7199 spectrometer, wavenumbers ($\tilde{\nu}$) in cm⁻¹. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: Finnigan MAT 95, accurate mass determinations: Bruker APEX III FT-MS (7 T magnet). NMR: Spectra were recorded on a Bruker DPX 300 or AV 400 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale. Melting points: Büchi melting point apparatus B-540 (corrected). Elemental analyses: H. Kolbe, Mülheim/Ruhr. All commercially available compounds (Fluka, Lancaster, Aldrich) were used as received unless stated otherwise.

N-(2,2-Diethoxyethyl)mesitylamine. *n*-BuLi (1.6 M in hexane, 64 mL, 103 mmol) was added to a solution of 2,4,6-trimethylaniline (13.2 mL, 94 mmol) in THF (150 mL) at 0°C. After the addition was complete, the mixture was stirred for 30 min at ambient temperature before bromoacetaldehyde diethylacetal (15.6 mL, 103 mmol) was

added. The reaction mixture was stirred overnight before the solution was poured into a mixture of sat. aq. NaHCO₃ and H_2O (200 mL, 1/1). The layers were separated, the

aqueous phase was extracted with *tert*-butyl methyl ether (2 x 150 mL), the combined organic layers were washed with water (100 mL) and brine (150 mL), dried over MgSO₄, filtered, and the filtrate was evaporated. Distillation of the residue furnished the title compound as a yellow oil (21.0 g, 89%); bp: 105°C / 0.05 torr; ¹H NMR (400 MHz, CDCl₃): $\delta = 6.81$ (s, 2H), 4.60 (t, J = 5.5 Hz, 1H), 3.72 (dt, J = 9.4, 7.0 Hz, 2H), 3.56 (dt, J = 9.3, 7.0 Hz, 2H), 3.07 (d, J = 5.7 Hz, 2H), 2.27 (s, 6H), 2.22 (s, 3H), 1.24 (t, J = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 129.1$, 129.0, 101.4, 62.0, 50.4, 20.2, 17.9, 15.0; IR (neat): $\tilde{\nu} = 2974$, 2915, 1485, 1443, 1372, 1347, 1304, 1230, 1123, 1061, 959, 941, 852, 738 cm⁻¹; MS (EI): m/z (%): 251 (57) [M]⁺, 206 (20), 148 (100), 103 (100), 75 (54), 47 (29); elemental analysis *calcd*. (%) for C₁₅H₂₅NO₂: C 71.67, H 10.02, N 5.57; *found*: C 71.75, H 10.01, N 5.46.

N-(2,2-Diethoxyethyl)-2,6-diisopropylaniline. *n*-BuLi (1.6 M in hexane, 52 mL, 82 mmol) was added to a solution of 2,6-diisopropylaniline (14.0 mL, OEt OEt 75 mmol) in THF (150 mL) at 0°C. Once the addition was complete, the mixture was stirred for 30 min at ambient temperature before bromoacetaldehyde diethylacetal (12.4 mL, 82 mmol) was added. After stirring overnight, the solution was poured

into a mixture of sat. aq. NaHCO₃ and H₂O (200 mL, 1/1). The layers were separated, the aqueous phase was extracted with *tert*-butyl methyl ether (2 x 150 mL), the combined organic layers were washed with water (100 mL) and brine (100 mL), dried over MgSO₄, filtered, and the filtrate was evaporated. Distillation of the residue afforded the title compound as a yellow oil (18.2 g, 82%); bp: 115°C / 0.05 torr; ¹H NMR (400 MHz, CDCl₃): δ = 7.10-7.03 (m, 3H), 4.68 (t, *J* = 5.5 Hz, 1H), 3.76 (tt, *J* = 7.0, 5.2 Hz, 2H), 3.58 (qd, *J* = 9.3, 7.0 Hz, 2H), 3.31 (sept, *J* = 6.8 Hz, 2H), 3.01 (d, *J* = 5.5 Hz, 2H), 1.26 (t, *J* = 7.0 Hz, 6H), 1.24 (d, *J* = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃): δ = 142.9, 142.2, 123.6, 123.5, 102.2, 62.7, 53.8, 27.5, 24.2, 15.4; IR (neat): $\tilde{\nu}$ = 2962, 2869,1739,1620, 1445, 1372, 1247, 1226, 1124, 1060, 941, 858, 803, 754 cm⁻¹; MS (EI): *m/z* (%): 293 (33) [M]⁺, 190 (55), 160 (19), 103 (100), 75 (31), 47 (15); elemental analysis *calcd*. (%) for C₁₈H₃₁NO₂: C 73.67, H 10.65, N 4.77; *found*: C 73.81, H 10.60, N 4.86.

Representative procedure for the synthesis of α -(alkyl/arylamino)ketones 5. In a typical experiment, a mixture of 3-hydroxybutan-2-one (7.04 g, 80 mmol), the amine R¹–NH₂ (40 mmol), toluene (150 mL) and two drops of concentrated HCl was stirred for 3 h at reflux with azeotropic removal of water using a Dean-Stark trap. After cooling the mixture to ambient temperature, the solvent was evaporated and the residue purified by flash chromatography (hexanes/EtOAc) to afford the desired α -aminoketone 5. The analytical and spectroscopic data of the products thus formed are compiled below:

3-(Phenylamino)butan-2-one: Yellow solid (84 %). mp = 51-52 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.16 (t, 2H, *J* = 7.4 Hz), 6.73 (t, 1H, *J* = 7.4 Hz), 6.54 (d, 2H, *J* = 7.8 Hz), 4.38 (br s, 1H), 4.05 (c, 1H, *J* = 7.0 Hz), 2.19 (s, 3H), 1.40 (d, 3H, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ = 210.2, 146.5, 129.4, 117.9, 113.0, 58.6, 25.8, 17.9. IR (KBr): \tilde{v} =

3355, 3079, 1713, 1602, 1581, 1512, 1428, 1359, 1319, 1282, 1141, 754, 698 cm⁻¹. HRMS *calcd.* for $C_{10}H_{13}NO$: 163.0997; *found* 163.0998; elemental analysis *calcd.* (%) for $C_{10}H_{13}NO$: C 73.59, H 8.03, N 8.59; *found* C 73.60, H 7.97, N 8.56.

3-(Mesitylamino)butan-2-one: Pale yellow oil (79 %). ¹H NMR (300 MHz, CDCl₃): δ

= 6.79 (s, 2H), 4.05 (q,1H, J = 7.0 Hz), 3.97 (br s, 1H), 2.25 (s, 6H), 2.21 (s, 3H), 2.19 (s, 3H), 1.25 (d, 3H, J = 7.0 Hz). ¹³C NMR (75 MHz, CDCl₃): δ = 210.0, 141.5, 130.9, 129.8, 129.0, 61.2, 27.5, 20.5, 18.8, 18.3. IR (KBr): $\tilde{\nu}$ = 3252, 2970, 2917, 1717,

1609, 1478, 1436, 1359, 1211, 1146, 1122, 1012, 856, 727 cm⁻¹. HRMS *calcd*. for $C_{13}H_{19}NO$: 205.1467; *found* 205.1467; elemental analysis *calcd*. (%) for $C_{13}H_{19}NO$: C 76.06, H 9.33, N 6.82; *found* C 76.21, H 9.51, N 6.80.

3-(3',4',5'-Trimethoxyphenylamino)butan-2-one: Pale yellow oil (67 %). ¹H NMR

(400 MHz, CDCl₃): $\delta = 5.80$ (s, 2H), 4.41 (br s, 1H), 4.10-3.95 (m, 1H), 3.81 (s, 6H), 3.75 (s, 3H), 2.21 (s, 3H), 1.41 (d, 3H, J = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta = 210.5$, 154.1, 143.3, 130.4, 90.6, 61.1, 59.1, 55.9, 53.5, 25.6, 18.0. IR (KBr): $\tilde{\nu} = 3372$, 2937, 2841, 1712, 1610, 1509, 1453, 1413,

1355, 1235, 1186, 1125, 1012, 808, 777 cm⁻¹. HRMS *calcd*. for $C_{13}H_{19}NO_4Na$: 276.1206; *found* 276.1204; elemental analysis *calcd*. (%) for $C_{13}H_{19}NO_4$: C 61.64, H 7.56, N 5.53; *found* C 61.51, H 7.83, N 5.25.

3-(1'-Adamantylamino)butan-2-one: Pale yellow oil (41%). ¹H NMR (400 MHz,

CDCl₃): δ = 3.55 (q, 1H, *J* = 7.1 Hz), 2.21 (s, 3H), 2.03 (br s, 3H), 1.78 (br s, 1H), 1.70-1.45 (m, 12H), 1.19 (d, 3H, *J* = 7.1 Hz). ¹³C NMR (100 MHz, CDCl₃): δ = 213.2, 55.5, 50.9, 43.2, 36.6, 29.5, 26.1, 21.1. IR (KBr): $\tilde{\nu}$ = 3304, 2905, 2848, 1713, 1452, 1356, 1148,

1100, 726, 693 cm⁻¹. HRMS *calcd*. for $C_{14}H_{23}NONa$: 244.1672; *found* 244.1672; *elemental analysis calcd*. (%) for $C_{14}H_{23}NO$: C 75.97, H 10.47, N 6.33; *found* C 75.83, H 10.40, N 6.27.

2-(*p***-Tolylamino)cyclohexanone:** White solid (63%). ¹H NMR (400 MHz, CDCl₃): $\delta =$

6.98 (d, 2H, *J* = 8.0 Hz), 6.53 (d, 2H, *J* = 9.2 Hz), 4.84 (br s, 1H), 3.96 (dd, 1H, *J* = 12.2, 5.8 Hz), 2.82-2.54 (m, 2H), 2.47-2.33 (m, 1H), 2.23 (s, 3H), 2.20-2.10 (m, 1H), 1.96-1.88 (m, 1H), 1.85-1.63

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006

(m, 2H), 1.50-1.35 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 208.6$, 144.3, 129.8, 126.8, 113.2, 62.2, 41.2, 35.9, 28.1, 24.1, 20.4. IR (KBr): $\tilde{\nu} = 3369$, 2935, 2864, 1705, 1616, 1526, 1308, 813 cm⁻¹. HRMS *calcd*. for C₁₃H₁₇NONa: 226.1202; *found* 226.1200; elemental analysis *calcd*. (%) for C₁₃H₁₇NO: C 76.81, H 8.43, N 6.89; *found* C 77.00, H 8.52, N 6.76.

N-Mesityl-*N*-(2-oxoethyl)formamide. A mixture of acetic anhydride (7.5 mL, 80 mmol) and formic acid (7.5 mL, 200 mmol) was stirred at ambient temperature for 2 h before it was added to an ice-cooled solution of N-(2,2-diethoxyethyl)mesitylamine (10.11 g, 40.2 mmol) in THF (150 mL) at such a rate that the internal temperature remained below 5°C. Once the addition was complete, the ice bath

was removed and stirring was continued for 30 min. The resulting mixture was poured into a solution of NaOH (10%, 200 mL), the aqueous phase was extracted with *tert*-butyl methyl ether (150 mL), the combined organic layers were washed with brine (150 mL), dried over MgSO₄ and the solvents were evaporated.

Formic acid (100 mL, 2.5 mL/mmol) was then added to the residue at 0°C and the resulting mixture was stirred at ambient temperature for 3 h before all volatile materials were distilled off. The crude product was dissolved in *tert*-butyl methyl ether (300 mL) and successively washed with sat. aq. NaHCO₃ (2 x 150 mL) and brine (150 mL), before the organic layer was dried over Na₂SO₄ and evaporated. The residue was purified by flash chromatography (hexanes/EtOAc, $4/1 \rightarrow 2/1$) to give a yellow oil which can be further purified by Kugelrohr distillation, affording the title compound as a colorless oil which slowly crystallized upon standing (4.50 g, 55%); mp = 39-40°C; ¹H NMR (300 MHz, CDCl₃): $\delta = 9.77$ (s, 1H), 8.16 (s, 1H), 6.96 (s, 2H), 4.15 (s, 2H), 2.30 (s, 3H), 2.25 (s, 6H); ¹³C NMR (75 MHz, CDCl₃): $\delta = 196.2$, 163.9, 138.9, 136.2, 129.8, 56.4, 20.9, 18.3; IR (neat): $\tilde{\nu} = 2922$, 2880, 1726, 1655, 1486, 1443, 1378, 1347, 1276, 1214, 1047, 998, 857 cm⁻¹; MS (EI): *m/z* (%): 205 (20) [M]⁺, 177 (49), 148 (100), 120 (26), 105 (13), 77 (13); elemental analysis *calcd*. (%) for C₁₂H₁₅NO₂: C 70.22, H 7.37, N 6.82; *found*: C 69.97, H 7.31, N 6.75.

N-(2,6-Diisopropylphenyl)-N-(2-oxoethyl)formamide. A mixture of acetic anhydride (5.6 mL, 60 mmol) and formic acid (5.6 mL, 150 mmol) was stirred for 2 h at ambient temperature before the mixture was slowly added to a solution of *N*-(2,2-diethoxyethyl)-2,6-diisopropylaniline (8.87 g, 30.2 mmol) in THF (150 mL) at 0°C. The resulting mixture was stirred for 5 h at ambient temperature before the reaction was quenched with aq. NaOH (10%, 150 mL). The layers were separated,

the aqueous phase was extracted with tert-butyl methyl ether (100 mL) and the

combined organic phases were washed with brine (100 mL) and dried over MgSO₄. After removal of the solvents, formic acid (75 mL) was added to the remainder at 0°C and the resulting mixture was kept at ambient temperature for 2.5 h before all volatile materials were distilled off. The residue was dissolved in tert-butyl methyl ether (250 mL) and the organic layer was washed with sat. aq. NaHCO₃ (2 x 100 mL) and brine (150 mL) before being dried over Na₂SO₄ and evaporated. Kugelrohr distillation of the residue followed by crystallization of the resulting material from EtOH (10 mL) furnished the desired product as a colorless solid (3.81 g, 51%); mp = 83-84°C; ¹H NMR (400 MHz, CDCl₃): $\delta = 9.83$ (t, J = 1.3 Hz, 1H), 8.22 (s,1H), 7.44-7.40 (m, 1H), 7.28-7.24 (m, 2H), 4.18 (d, J = 1.3 Hz, 2H), 3.10 (sept, J = 6.8 Hz, 2H), 1.23 (d, J =6.8, 6H), 1.22 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 195.8$, 163.9, 147.4, 135.0, 130.0, 124.6, 57.7, 28.3, 24.6, 24.0; IR (neat): $\tilde{\nu} = 3072$, 2966, 2870, 2811, 2715, 1741, 1659, 1589, 1466, 1454, 1381, 1327, 1286, 1204, 1057, 1042, 933, 869, 812 cm⁻¹; MS (EI): m/z (%): 247 (23) [M]⁺, 214 (100), 204 (14), 176 (14), 160 (14), 148 (12), 132 (13), 91 (11), 43 (13); elemental analysis *calcd*. (%) for C₁₅H₂₁NO₂: C 72.84, H 8.56, N 5.66; found: C 72.81, H 8.49, N 5.57.

General procedure for the formylation of α -(alkyl/arylamino)ketones (5 \rightarrow 6): In a typical experiment, a mixture of the α -(alkyl/arylamino)ketone 5 (10 mmol), acetic formic anhydride (1.32 g, 15 mmol)¹ and THF (5 mL) was stirred overnight. For work up, all volatile materials were evaporated and the residue purified by flash chromatography (hexanes/EtOAc) to afford the desired formamide 6. The analytical and spectroscopic data of the products thus formed are compiled below:

N-Formyl-3-(phenylamino)butan-2-one: Colorless oil (91%). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.38$ (s, 1H), 7.46-7.33 (m, 3H), 7.22-7.17 (m, 2H), 4.87 (q,1H, J = 7.3 Hz), 2.29 (s, 3H), 1.35 (d, 3H, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.3$, 162.6, 139.1, 129.7, 127.9, 126.2, 60.3, 26.8, 13.7. IR (KBr): $\tilde{\nu} = 2990$, 2940, 2881, 1722, 1675, 1595,

1496, 1456, 1357, 1294, 1260, 1185, 1094, 772, 746, 700, 557 cm⁻¹. HRMS *calcd*. for $C_{11}H_{13}NO_2$: 191.0946; *found* 191.0944; elemental analysis *calcd*. (%) for $C_{11}H_{13}NO$: C 69.09, H 6.85, N 7.32; *found* C 68.89, H 6.92, N 7.38.

N-Formyl-3-(mesitylamino)butan-2-one: Pale yellow solid (84%). mp = 98-99 °C. ¹H NMR (300 MHz, CDCl₃): δ = 7.98 (s, 1H), 6.96 (s, 1H), 6.92 (s, 1H), 4.52 (q,1H, *J* = 7.4 Hz), 2.41 (s, 3H), 2.38 (s, 3H), 2.27 (s, 3H), 2.15 (s, 3H), 0.98 (d, 3H, *J* = 7.4 Hz). ¹³C NMR (75 MHz, CDCl₃): δ = 205.4, 163.6, 138.8, 137.8, 133.1, 129.6, 129.0, 59.4, 27.8, 20.9, 18.9, 18.6, 13.6. IR (KBr): $\tilde{\nu}$ = 2988, 2916, 1719,

¹ L. I. Krimen, Org. Synth. 1970, **50**, 1.

MeO

MeO

MeO

1657, 1486, 1452, 1319, 1304, 1251, 1166 cm⁻¹. HRMS *calcd*. for $C_{14}H_{19}NO_2Na$: 256.1308; *found* 256.1308; elemental analysis *calcd*. (%) for $C_{14}H_{19}NO_2$: C 72.07, H 8.21, N 6.00; *found* C 71.96, H 8.19, N 5.95.

N-Formyl-3-(3',4',5'-trimethoxyphenylamino)butan-2-one: Pale yellow solid (92)

%). mp = 94-95 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.35 (s, 1H), 6.47 (s, 2H), 4.89 (q,1H, *J* = 7.4 Hz), 3.86 (s, 9H), 2.30 (s, 3H), 1.34 (d, 3H, *J* = 7.4 Hz). ¹³C NMR (100 MHz, CDCl₃): δ = 205.6, 162.6, 153.6, 137.9, 134.5, 104.8, 60.9, 60.1, 56.3, 27.0, 13.8. IR (KBr): $\tilde{\nu}$ = 3072, 2991, 2965, 2894,

1730, 1677, 1594, 1505, 1470, 1450, 1363, 1278, 1243, 1126, 1004, 815, 766, 736 cm⁻¹. HRMS *calcd.* for C₁₄H₁₉NO₅Na: 304.1155; *found* 304.1153; elemental analysis *calcd.* (%) for C₁₄H₁₉NO₅: C 59.78, H 6.81, N 4.98; *found* C 60.02, H 6.67, N 4.85.

N-Formyl-3-(1'-adamantylamino)butan-2-one: Pale yellow solid (93%). mp = 106-107 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.32$ (s, 1H), 3.63 (q, 1H, J = 6.7 Hz), 2.23 (br s, 3H), 2.15 (s, 3H), 2.06-1.91 (m, 6H), 1.78-1.63 (m, 6H), 1.48 (d, 3H, J = 6.7 Hz). ¹³C NMR (100 MHz, CDCl₃): $\delta = 205.3$, 160.7, 57.2, 57.0, 42.4, 35.8, 29.4, 26.4, 15.4. IR (KBr): $\tilde{\nu} = 2910$, 2857, 1715, 1647, 1382, 1367, 1247, 1091 cm⁻¹. HRMS *calcd*. for C₁₅H₂₃NO₂Na: 272.1621; *found* 272.1621; elemental analysis *calcd*. (%) for C₁₅H₂₃NO₂: C 72.25, H 9.30, N 5.62; *found* C 72.35, H 9.26, N 5.54.

N-Formyl-2-(*p*-tolylamino)cyclohexanone: White solid (88%). mp = 127-128 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.30 (s, 1H), 7.22-7.12 (m, 4H), 4.98 (dd, 1H, *J* = 12.2, 5.7 Hz), 2.63-2.54 (m, 1H), 2.52-2.41 (m, 1H), 2.36 (s, 3H), 2.13-1.99 (m, 2H), 1.98-1.91 (m, 1H), 1.84-1.67 (m, 2H), 1.66-1.51(m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 205.2, 163.0, 138.1, 136.4, 129.9, 128.1, 62.8, 41.2, 31.1, 26.4,

24.7, 21.0. IR (KBr): $\tilde{v} = 2941$, 2905, 2864, 1720, 1673, 1607, 1515, 1378, 1339, 1277, 1240, 1203, 826 cm⁻¹. HRMS *calcd*. for C₁₄H₁₇NO₂Na: 254.1151; *found* 254.1151; *elemental analysis calcd*. (%) for C₁₄H₁₇NO₂: C 72.70, H 7.41, N 6.06; *found* C 72.82, H 7.45, N 5.91.

Standard procedure for the preparation of 4,5-unsubstituted 4*H*,5*H*-imidazolium salts 12 ($\mathbb{R}^4 = \mathbb{R}^5 = \mathbb{H}$). The respective *N*-aryl-*N*-(2-oxoethyl)formamide (1 mmol) was dissolved in acetic anhydride (1 mL) and HClO₄ (100 µL, 70 % *w/w* in water, 1.15 equiv) or HBF₄·OEt₂ (158 µL, 1.15 equiv) was slowly added at ambient temperature. A small increase of the temperature can be detected during the addition. The mixture was stirred overnight before Et₂O (5 mL) was introduced to precipitate compound 10. The solvent was removed using a pipette and the remaining solid was washed with Et₂O (3 x

3 mL). A suspension of this solid in toluene (4 mL) was reacted with the amine R^2 –NH₂ of choice (1.5 mmol) for 3-4 hours, during which course the formation of a precipitate or the separation of a second phase was observed. Stirring was discontinued, the toluene phase was removed with a pipette and the residue was triturated with Et₂O (3 x 3 mL). Toluene (4 mL) was added to the remainder before 48% aq. HBF₄ or 70% aq. HClO₄ (1 equiv) was introduced. The mixture was stirred at 80°C overnight before the solvent was evaporated and the residue was taken up in CH₂Cl₂ (~ 4-5 mL) (if a precipitate appears at that point, it is filtered off prior to further processing). NH₃ (0.35 mL, 7 M in MeOH, 2.5 equiv) was then added to the clear solution and the precipitate of NH₄ClO₄ (or NH₄BF₄) was filtered off through a small plug of Celite. Evaporation of the filtrate, and precipitation and washing of the final product with Et₂O provided the corresponding imidazolium salt **12** as an analytically pure powder.

The following compounds were prepared by this method:

1-Mesityl-3-acetoxyoxazolinium perchlorate: White powder (92%); ¹H NMR (400

MHz, CD₃CN): δ 8.86 (br s, 1H), 7.36 (ddd, J = 7.0, 3.1, 1.2 Hz, 1H), 7.12 (s, 2H), 4.70 (tdd, J = 14.3, 7.0, 1.8 Hz, 1H), 4.30 (dd, J = 14.3, 3.1 Hz, 1H), 2.34 (s, 3H), 2.28 (s, 6H), 2.22 (s, 3H); ¹³C NMR (101 MHz, CD₃CN): δ 169.0, 168.1, 143.1, 135.8, 130.9, 128.0, 100.8, 56.1, 21.0, 20.6, 17.5; IR (KBr):

3103, 3021, 2980, 2927, 1780, 1677, 1636, 1388, 1362, 1182, 1099, 943, 852, 744, 625 cm⁻¹; MS (ESI): m/z (%): 248 (100) [M – ClO₄]⁺, 206 (68); HRMS (EI): m/z : *calcd*. for C₁₄H₁₈NO₃: 248.128117, *found*: 248.127880.

1-(2,6-Diisopropylphenyl)-3-acetoxyoxazolinium perchlorate: White powder (98%).

Crystallization from CH₃CN/Et₂O furnished colorless crystals suitable for crystal structure analysis; ¹H NMR (400 MHz, CD₃CN): δ 8.95 (m, 1H), 7.61 (m, 1H), 7.44 (d, J = 7.9 Hz, 2H), 7.36 (dd, J = 7.0, 3.1 Hz, 1H), 4.69 (ddd, J= 14.1, 7.0, 1.9 Hz, 1H), 4.28 (ddd, J = 14.4, 3.1, 1.2 Hz, 1H), 2.89 (sept, J = 6.8 Hz,

1H), 2.82 (sept, J = 6.8 Hz, 1H), 2.23 (s, 3H), 1.31 (d, J = 6.8 Hz, 3H), 1.28 (d, J = 6.8 Hz, 3H), 1.26 (d, J = 6.8 Hz, 3H), 1.24 (d, J = 6.8 Hz, 3H); ¹³C NMR (101 MHz, CD₃CN): δ 168.9, 167.9, 146.6, 146.4, 133.4, 127.3, 126.3, 126.2, 100.8, 58.6, 29.3, 29.2, 24.6, 24.5, 24.3, 24., 20.6; IR (KBr): 3057, 2972, 2932, 2873, 1793, 1638, 1467, 1394, 1366, 1179, 1091, 939, 851, 810, 759, 715, 625 cm⁻¹; MS (ESI): *m/z* (%): 290 (90) [M - ClO₄]⁺, 248 (100); HRMS (EI): *m/z*: calcd. for C₁₇H₂₄NO₃: 290.175070, *found*: 290.174833.

1-Mesityl-3-(p-tolyl)imidazolium perchlorate: Off-white powder (215 mg, 59 %); mp

= 216-218 °C; ¹H NMR (400 MHz, CDCl₃): δ = 9.25 (t, J = 1.6 Hz, 1H), 7.94 (t, J = 1.8 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.43 (t, J = 1.6 Hz, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.03 (s, 2H), 2.43 (s, 3H), 2.35 (s, 3H), 2.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.6, 141.4, 135.0,

134.1, 131.2, 130.0, 124.8, 122.3, 122.1, 21.2, 21.1, 17.5; IR (KBr): $\tilde{\nu} = 3183$, 3147, 3069, 2982, 2955, 2924, 1607, 1545, 1514, 1487, 1460, 1447, 1239, 1107, 1088, 822, 622 cm⁻¹; MS (ESI): *m/z* (%): 277.0 (100) [M – ClO₄]⁺; HRMS (EI): *m/z*: *calcd*. for C₁₉H₂₁N₂: 277.169921, *found*: 277.170043; elemental analysis *calcd*. (%) for C₁₉H₂₁ClN₂O₄: C 60.56, H 5.62, N 7.43; *found*: C 60.77, H 5.56, N 7.40.

1-Mesityl-3-(p-tolyl)imidazolium tetrafluoroborate: White powder (230 mg, 56%);

mp = 181-183 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.25 (t, J = 1.6 Hz, 1H), 8.03 (t, J = 1.8 Hz, 1H), 7.65 (d, J = 8.0 Hz, 2H), 7.42 (t, J = 1.6 Hz, 1H), 7.34 (d, J = 8.1 Hz, 2H), 6.97 (s, 2H), 2.38 (s, 3H), 2.31 (s, 3H), 2.07 (s, 6H);

¹³C NMR (100 MHz, CDCl₃): δ = 141.2, 140.9, 134.6, 134.1, 131.8, 131.0, 130.6, 129.7, 124.9, 122.5, 121.9, 21.1, 21.0, 17.3; IR (KBr): $\tilde{\nu}$ = 3153, 3072, 2983, 2956, 2926, 2868, 1609, 1546, 1515, 1488, 1461, 1447, 1385, 1240, 1061, 822, 748, 669, 521 cm⁻¹; MS (ESI): *m/z* (%): 277.0 (100) [M – BF₄]⁺; HRMS (EI): *m/z*: calcd. for C₁₉H₂₁N₂: 277.169921, found: 277.170065.

1-Mesityl-3-((S)-1-phenylethyl)imidazolium perchlorate: Pale orange powder (225

mg, 64%); mp = 139-140 °C; $[\alpha]_D^{20} = -34.2$ (*c* 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.93$ (t, J = 1.5 Hz, 1H), 7.59 (t, J = 1.8 Hz, 1H), 7.46-7.37 (m, 5H), 7.21 (t, J = 1.8 Hz, 1H), 6.97 (s, 2H), 6.07 (q, J = 7.0 Hz, 1H), 2.31 (s, 3H), 2.04 (s, 3H), 2.03 (d, J = 7.0 Hz, 3H), 1.7 (s,

3H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 141.3$, 137.7, 136.0, 134.3, 134.1, 130.5, 129.8, 129.7, 129.6, 129.5, 126.9, 123.9, 121.5, 60.3, 21.0, 20.8, 17.2; IR (KBr): $\tilde{\nu} = 3165$, 3138, 3089, 2983, 2925, 1608, 1548, 1484, 1457, 1385, 1289, 1191, 1159, 1097, 857, 829, 75, 702, 603 cm⁻¹; MS (ESI): *m/z* (%): 291.0 (100) [M - ClO₄]⁺, 186.9 (95); HRMS (EI): *calcd.* for C₂₀H₂₃N₂: 291.185573, *found*: 291.185535; elemental analysis *calcd.* (%) for C₂₀H₂₃ClN₂O₄: C 61.46, H 5.93, N 7.17; *found*: C 61.58, H 5.97, N 7.11.

1-(2,6-Diisopropylphenyl)-3-(mesityl)imidazolium perchlorate: Starting from 213

mg of *N*-mesityl-*N*-(2-oxoethyl)formamide (1.04 mmol) the product was obtained as a white powder (340 mg, 73%). Starting from 247 mg of *N*-(2,6-diisopropylphenyl)-*N*-(2-oxoethyl)formamide (1.00 mmol) the product was obtained as a white powder (405 mg, 91%); mp = 244-246 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.95 (t, *J* = 1.6 Hz, 1H), 7.65

(d, J = 1.6 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.8 Hz, 2H), 7.02 (s, 2H), 2.36 (sept, J = 6.8 Hz, 2H), 2.32 (s, 3H), 2.09 (s, 6H), 1.21 (d, J = 6.8 Hz, 6H), 1.18 (d, J = 6.9 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 145.0$, 141.4, 137.5, 133.8, 132.0, 130.2, 130.0, 129.8, 126.1, 125.2, 124.6, 28.9, 24.1, 23.9, 21.1, 17.1; IR (KBr): 3157, 3110, 3042, 2967, 2930, 2873, 1610, 1548, 1462, 1389, 1368, 1332, 1250, 1213, 1172, 1092, 934, 872, 808, 760, 677, 624 cm⁻¹; MS (ESI): m/z (%): 347.1 (100) [M - ClO₄]⁺; HRMS (EI): *calcd*. for C₂₄H₃₁N₂: 347.248174, *found*: 347.248487; elemental analysis *calcd*. (%) for C₂₄H₃₁ClN₂O₄: C 64.49, H 6.99, N 6.27; *found*: C 64.50, H 6.87, N 6.27.

1-(2,6-Diisopropylphenyl)-3-(mesityl)imidazolium tetrafluoroborate: White powder

(323 mg, 75%); mp = 248-249 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.85 (t, J = 1.6 Hz, 1H), 7.63 (d, J = 1.6 Hz, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.30 (d, J = 7.8 Hz, 2H), 7.02 (s, 2H), 2.35 (sept, J = 6.8 Hz, 2H), 2.33 (s, 3H), 2.09 (s, 6H), 1.20 (d, J = 6.8 Hz, 6H), 1.16 (d, J = 6.9 Hz, 6H); ¹³C

NMR (100 MHz, CDCl₃): δ = 145.0, 141.4, 137.3, 133.9, 132.0, 130.2, 130.0, 129.9, 126.2, 125.2, 124.6, 28.9, 24.1, 23.9, 21.1, 17.0; IR (KBr): $\tilde{\nu}$ = , 3161, 3124, 2968, 2931, 2873, 1611, 1532, 1463, 1215, 1056, 935, 809, 761, 678 cm⁻¹; MS (ESI): *m/z* (%): 347.1 (100) [M – BF₄]⁺; HRMS (EI): *calcd.* for C₂₄H₃₁N₂: 347.248169, found: 347.248070; elemental analysis *calcd.* (%) for C₂₄H₃₁BF₄N₂: C 66.37, H 7.19, N 6.45; *found*: C 66.27, H 7.14, N 6.35.

1-(2,6-Diisopropylphenyl)-3(adamantyl)imidazolium perchlorate: White powder

(381 mg, 82%); mp = 244-246 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.86 (t, *J* = 1.6 Hz, 1H), 7.9 (t, *J* = 1.8 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H), 7.33 (t, *J* = 1.8 Hz, 1H), 7.29 (d, *J* = 7.8 Hz, 2H), 2.34 (br s, 3H), 2.30 (br s, 6H), 2.21 (sept, *J* = 6.8 Hz, 2H), 1.81 (br q, *J* = 12.7 Hz, 6H), 1.19 (d, *J* = 6.8

Hz, 6H), 1.14 (d, J = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃): $\delta = 145.2$, 134.4, 131.8, 130.3, 125.0, 124.5, 120.2, 61.7, 42.6, 35.1, 29.5, 28.7, 24.3, 24.0; ; IR (KBr): 3152, 2968, 2912, 2867, 1540, 1460, 1366, 1309, 1254, 1175, 1084, 804, 759, 623 cm⁻¹; MS (ESI): m/z (%): 363.2 (100) [M – ClO₄]⁺; HRMS (EI): *calcd.* for C₂₅H₃₅N₂:

363.279476, *found*: 363.279201; elemental analysis *calcd*. (%) for C₂₅H₃₅ClN₂O₄: C 64.85, H 7.62, N 6.05; *found*: C 64.76, H 7.57, N 5.97.

General procedure for the "one pot" synthesis of non-symmetric 4,5-disubstituted imidazolium salts 12 (\mathbb{R}^4 , $\mathbb{R}^5 \neq \mathbb{H}$): A 50 mL Schlenk flask was charged under argon with the corresponding formylaminoketone (1 mmol) and acetic anhydride (1.5 mL). 70% aq. HClO₄ (100 μ L) or 48% aq. HBF₄ (138 μ L) were added dropwise to this mixture at such a rate as to keep the temperature below 50 °C. Once the addition was complete, the mixture was stirred for 3 h at ambient temperature. For work up, Et₂O (10 mL) was added causing the precipitation of compound 10 as an oil or as a crystalline solid. The supernatant organic phase was removed via canula and the precipitate was rinsed with Et₂O (2 x 5 mL) before it was suspended in toluene (2 mL). The desired amine R^2 -NH₂ (1.5 mmol) was then added to this suspension in one portion and the resulting mixture was stirred for 3 h during which time the 4-hydroxy-imidazolinium salts 11 separates. The precipitate was filtered off and was washed with Et₂O (2 x 5 mL) before it was suspended in toluene (2 mL) and acetic anhydride (2 mL) containing a catalytic amount of either 70% aq. HClO₄ or 48% aq. HBF₄. The resulting mixture is stirred at 80°C overnight. After evaporation of the solvents, the crude imidazolium salts were triturated with Et₂O and the resulting suspension was placed in a ultrasonic cleaning bath for ca. 20 min. During this time the desired compound 12 precipitated as a white or pale brown solid which was filtered off and dried in vacuo. The analytical and spectroscopic data of the resulting products are compiled below:

1-Phenyl-3-*t*-butyl-4-hydroxy-4,5-dimethyl-4,5-dihydroimidazolium perchlorate:

White solid (96 %). mp = 141-142 °C. ¹H NMR (400 MHz, acetone-d₆): δ = 8.37 (s, 1H), 7.43-7.22 (m, 5H), 6.34 (br s, 1H), 4.68 (q,1H, *J* = 6.8 Hz), 1.43 (s, 9H), 1.38 (s, 3H), 1.28 (d, 3H, *J* = 6.8 Hz). ¹³C NMR (75 MHz, acetone-d₆): δ = 153.3, 138.9, 131.0, 128.6, 124.3, 67.1, 59.4, 53.8, 28.3, 27.1, 12.6. IR (KBr):

 \tilde{v} = 3421, 2981, 2917, 2839, 2635, 1624, 1595, 1552, 1402, 1296, 1279, 1216, 1194, 1094, 791, 693, 623 cm⁻¹; HRMS (EI): *calcd.* for C₁₅H₂₃N₂O⁺: 247.1805, *found*: 247.1805; elemental analysis *calcd.* (%) for C₁₅H₂₃ClN₂O₅: C 51.95, H 6.68, N 8.08; *found* C 52.10, H 6.64, N, 8.15.

1-Phenyl-3-t-butyl-4,5-dimethylimidazolium perchlorate: Colorless needles (91%).

mp = 106-107 °C. ¹H NMR (400 MHz, acetone-d₆): δ = 9.05 (s, 1H), 7.67 (br s, 5H), 2.63 (s, 3H), 2.22 (s, 3H), 1.86 (s, 9H). ¹³C NMR (100 MHz, acetone-d₆): δ = 135.3, 134.9, 131.8, 131.2, 130.7, 128.4, 127.8, 62.8, 30.1, 12.4, 9.5. IR (KBr): $\tilde{\nu}$ = 3153, 3080, 2991, 1600, 1555, 1466, 1227, 1094, 774, 697, 622 cm⁻¹.

HRMS *calcd*. for $C_{15}H_{21}N_2^+$: 229.1699; *found* 229.1699; elemental analysis *calcd*. (%) for $C_{15}H_{21}CIN_2O_4$: C 54.79, H 6.44, N 8.52; *found* C 54.81, H 6.45, N 8.52.

1-(Bicyclo[2.2.1]heptanyl)-3-mesityl-4,5-dimethylimidazolium perchlorate: Light

yellow solid (84%). mp = 187-188 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.45 (s, 1H), 7.02 (s, 2H), 4.37-7.29 (m, 1H), 2.78 (d, 1H, *J* = 4.5 Hz), 7.09 (br s, 1H), 2.42 (s, 3H), 2.34 (s, 3H), 2.20-2.10 (m, 1H), 1.99 (s, 3H), 1.97 (s, 3H), 1.96 (s, 3H), 1.84-1.71 (m, 2H), 1.63-1.54 (s, 1H), 1.53-

1.37 (m, 2H), 1.33-1.26 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 141.1, 135.1, 134.8, 131.0, 129.8, 129.7, 129.0, 128.4, 128.1, 61.5, 41.7, 39.5, 36.8, 35.8, 27.8, 27.0, 21.2, 17.4, 9.4, 8.2. IR (KBr): $\tilde{\nu}$ = 3126, 2961, 2877, 1546, 1456, 1219, 1097, 623; HRMS *calcd.* for C₂₁H₂₉N₂⁺: 309.2325; *found* 309.2325; elemental analysis *calcd.* (%) for C₂₁H₂₉ClN₂O₄: C 61.68, H 7.15, N 6.85; *found* C 61.60, H 7.18, N 6.80.

1-(3',4',5'-Trimethoxyphenyl)-3-(2',5'-difluoro)-4,5-dimethylimidazolium

tetrafluoroborate: Pink foam (31%). ¹H NMR (400 MHz, CDCl₃): δ = 8.65 (s, 1H), 7.67-7.60 (m, 1H), 7.38-7.24 (m, 2H), 6.87 (s, 2H), 3.87 (s, 9H), 2.24 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.8 (d, *J*_{C-F} = 246 Hz), 154.0, 152.8 (d, *J*_{C-F} = 249

Hz), 139.6, 134.8, 128.6, 128.3, 121.3 (dd, $J_{C-F} = 15.0$, 10.0 Hz), 120.1 (dd, $J_{C-F} = 23.6$, 7.8 Hz), 118.1 (dd, $J_{C-F} = 21.3$, 8.7 Hz), 116.8 (d, $J_{C-F} = 27.1$ Hz), 103.9, 60.9, 56.6, 9.1, 8.6. IR (KBr): $\tilde{\nu} = 3138$, 3082, 2978, 1603, 1555, 1506, 1470, 1427, 1236, 1128, 1061, 831, 772, 661, 521; HRMS *calcd*. for C₂₀H₂₁N₂O₃F₂⁺: 375.1515; *found* 375.1512; elemental analysis *calcd*. (%) for C₂₀H₂₁BF₆N₂: C 51.97, H 4.58, N 6.06; *found* C 51.86, H 4.69, N 6.02.

(S)-1-Adamantyl-3-(1'-phenylethyl)-4,5-dimethylimidazolium tetrafluoroborate:

White solid (59%). mp = 187-188 °C. $[\alpha]_D^{20} = +59.4$ (*c* 1.10, CHCl₃). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.63$ (s, 1H), 7.42-7.23 (m, 3H), 7.25-7.14 (m, 2H), 5.59-5.51 (q,1H, J = 7.0 Hz), 2.47 (s, 3H), 2.31 (s, 9H), 2.00 (s, 3H), 1.97 (d, 3H, J = 7.0 Hz), 1.78 (br s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 138.4$,

131.2, 129.4, 129.1, 128.7, 127.3, 126.2, 62.8, 58.6, 41.2, 35.3, 29.6, 21.0, 12.2, 8.8. IR (KBr): $\tilde{\nu} = 3174$, 2914, 2855, 1625, 1544, 1496, 1456, 1308, 1246, 1179, 1070, 773, 708, 578, 521; HRMS *calcd.* for C₂₃H₃₁N₂⁺: 335.2482; *found* 335.2485; elemental analysis *calcd.* (%) for C₂₃H₃₁BN₂F₄: C 65.41, H 7.40, N 6.63; *found* C 65.29, H 7.35, N 6.53.

1-(p-Tolyl)-3-(1'-adamantyl)-4,5,6,7-tetrahydrobenzimidazolium perchlorate: Pale

yellow solid (88%). mp = 160-161 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.46 (s, 1H), 7.44 (d, 2H, *J* = 8.2 Hz), 7.34 (d, 2H, *J* = 8.2 Hz), 3.02-2.97 (m, 2H), 2.54-2.47 (m, 2H), 2.42 (s, 3H), 2.37-2.28 (m, 9H), 1.99-1.90 (m, 2H), 1.90-1.82 (m, 2H), 1.75 (br s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 140.9, 131.9, 131.6, 130.7, 129.5, 125.5, 62.8,

41.2, 35.4, 29.6, 24.5, 22.3, 21.3, 21.2, 21.0. IR (KBr): $\tilde{\nu} = 3129$, 2955, 1552, 1455, 1220, 1061, 819, 710, 571, 522; HRMS *calcd*. for C₂₄H₃₁N₂⁺: 347.2482; *found* 347.2484; elemental analysis *calcd*. (%) for C₂₄H₃₁ClN₂O₄: C 64.49, H 6.99, N 6.27; *found* C 64.71, H 6.80, N 5.98.

X-ray Crystallography

X-ray diffraction data were collected at low temperature in a cold nitrogen gas stream using Bruker AXS CCD diffractometers (KappaCCD for **10** and **11**, and Proteum X8 for **12**). Structures were solved by direct methods (SHELXS-97) and were refined using full matrix least-squares based on F^2 (SHELXL-97). Hydrogen atoms were placed at geometrically idealized positions and refined using constraints (riding model), highest residual electron density peak were < 0.6 e⁻ Å⁻³. The *tert*-butyl group in **11** is disordered over two positions at a ratio of 40:60 and was refined using distance restraints to maintain a C₃ symmetric geometry. Hydrogen atoms attached to the two partially occupied parts of this group were prevented from occupying physically unreasonable positions using the BUMP restraint. Complete lists of atom co-ordinates and anisotropic displacement parameters as well as tables of bond lengths and bond angles are available as CIF from the Cambridge Crystallographic Data Centre quoting the reference no. CCDC 602506 (**10**), CCDC 602504 (**11**), CCDC 602505 (**12**).

Crystal data for compound 10 ($\mathbb{R}^1 = 2,6$ -di-isopropylphenyl; $\mathbb{R}^4 = \mathbb{R}^5 = \mathbb{H}$)): C₁₇H₂₄ClNO₇, M = 389.82, colorless, crystal dimensions 0.26 x 0.08 x 0.08 mm, triclinic P1 (no. 2), at 100 K a = 9.5374(10), b = 10.5798(14), c = 10.6445(14) Å, $\alpha =$ 73.132(5), $\beta = 87.076(6)$, $\gamma = 69.773(5)^\circ$, U = 963.0(2) Å³, Z = 2, $\rho = 1.344$ Mg m⁻³, $\mu =$ 0.236 mm⁻¹, $\lambda = 0.71073$ Å. Data collection to $\theta_{max} = 33.74^\circ$, 84.6% completeness, 14693 reflections measured, 6512 unique ($R_{int} = 0.101$). Refinement converged at R(F)= 0.091 and $wR(F^2) = 0.234$ (all data).

Crystal data for compound 11 ($\mathbf{R}^1 = \mathbf{Ph}$, $\mathbf{R}^2 = tert$ -Bu, $\mathbf{R}^4 = \mathbf{R}^5 = \mathbf{Me}$): C₁₅H₂₃ClN₂O₅, M = 346.80, colorless, crystal dimensions 0.24 x 0.20 x 0.10 mm, monoclinic P2₁/n (no. 14), at 100 K a = 11.5277(4), b = 8.3692(3), c = 17.3259(6) Å, $\alpha = 90$, $\beta = 97.388(2)$, γ $= 90^\circ$, U = 1657.68(10) Å³, Z = 4, $\rho = 1.390$ Mg m⁻³, $\mu = 0.257$ mm⁻¹, $\lambda = 0.71073$ Å. Data collection to $\theta_{max} = 31.49^\circ$, 99.5% completeness, 37427 reflections measured, 5490 unique ($R_{int} = 0.110$). Refinement converged at R(F) = 0.077 and $wR(F^2) = 0.200$ (all data).

Crystal data for compound 12 (\mathbb{R}^1 = mesityl, \mathbb{R}^2 = 2,6-di-isopropylphenyl, \mathbb{R}^4 = \mathbb{R}^5 = H): C₂₄H₃₁ClN₂O₄, M = 446.96, colorless, crystal dimensions 0.15 x 0.12 x 0.05 mm, triclinic P1 (no. 2), at 100 K a = 9.5248(2), b = 9.5297(2), c = 15.4459(4) Å, α = 80.3070(10), β = 88.7100(10), γ = 60.7890(10)°, U = 1203.33(5) Å³, Z = 2, ρ = 1.234 Mg m⁻³, μ = 1.659 mm⁻¹, λ = 1.54178 Å. Data collection to θ_{max} = 68.03°, 93.7% completeness, 24652 reflections measured, 4125 unique (R_{int} = 0.048). Refinement converged at R(F) = 0.038, and $wR(F^2)$ = 0.104 (all data).

Fig. 1: Molecular structure of **10** from single crystal X-ray structure determination. Anisotropic displacement parameter ellipsoids are shown at 50% probability and hydrogen atoms have been omitted.

Fig. 2: Molecular structure of **11** from single crystal X-ray structure determination. Anisotropic displacement parameter ellipsoids are shown at 50% probability and hydrogen atoms have been omitted. The *tert*-butyl group is disordered over two positions at a ratio of 40:60.

Fig. 3: Molecular structure of **12** from single crystal X-ray structure determination. Anisotropic displacement parameter ellipsoids are shown at 50% probability and hydrogen atoms have been omitted. The *tert*-butyl group is disordered over two positions at a ratio of 40:60.