Synthesis of a Coumarin Compound from Phenanthrene by TiO_{2}-Photocatalyzed Reaction
 Suguru Higashida** ${ }^{a}$, Aiko Harada ${ }^{a}$, Rikako Kawakatsu ${ }^{a}$, Noriko Fujiwara ${ }^{a}$, and Michio Matsumura* ${ }^{b}$
 ${ }^{a}$ Department of Industrial Systems Engineering,
 Osaka Prefectural College of Technology
 26-12 Saiwai, Neyagawa, Osaka 572-8572, Japan
 ${ }^{b}$ Research Center for Solar Energy Chemistry, Osaka University,
 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
 E-mail: Suguru Higashida ton@ipc.osaka-pct.ac.jp, Michio Matsumura matsu@chem.es.osaka-u.ac.jp,

Electronic Supplementary Material

Methods: The authentic sample of $\mathbf{2}$ was purchased from Wako Pure Chemical and that of $\mathbf{4}$ was synthesized from phenanthrene via ozonolysis, and $\mathbf{3}$ was isolated from the reaction products. Their ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a JEOL JNM-AL400 NMR spectrometer. HH-COSY and CH-COSY spectra of $\mathbf{3}$ were measured on a Varian-Unity INOVA 500 NMR spectrometer.

$3{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42\left(1 \mathrm{H}\right.$, d.d, $\left.J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, \mathrm{H}^{1}\right), 8.14(1 \mathrm{H}, \mathrm{d}, J=8.0$ $\left.\mathrm{Hz}, \mathrm{H}^{4}\right), 8.08\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}^{5}\right), 7.84\left(1 \mathrm{H}, \mathrm{t} . \mathrm{d}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, \mathrm{H}^{3}\right), 7.59(1 \mathrm{H}$, t.d, J $\left.=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, \mathrm{H}^{2}\right), 7.49\left(1 \mathrm{H}, \mathrm{t} . \mathrm{d}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, \mathrm{H}^{7}\right), 7.38(1 \mathrm{H}, \mathrm{d} . \mathrm{d} J=8.0 \mathrm{~Hz}, 1.2$ $\left.\mathrm{Hz}, \mathrm{H}^{8}\right), 7.35\left(1 \mathrm{H}, \mathrm{t} . \mathrm{d}, J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, \mathrm{H}^{6}\right) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.06$, $151.21,134.75,134.71,130.52,130.37,128.81,124.48,122.69,121.61,121.23,118.00$, 117.74.
$4{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 8.06(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}, 5-\mathrm{ArH})$, $7.67(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 4-\mathrm{ArH}), 7.60(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}, 3-\mathrm{ArH}), 7.36(2 \mathrm{H}, \mathrm{d}, J=7.4 \mathrm{~Hz}$, $2-\mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.75(\mathrm{CHO}), 141.04(1-\mathrm{Ar}), 134.39(6-\mathrm{Ar})$, $133.28(2-\mathrm{Ar}), 131.56(5-\mathrm{Ar}), 128.39(3-\mathrm{Ar}), 128.40(4-\mathrm{Ar})$.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

HH-COSY and CH-COSY(Varian-Unity INOVA 500) of $\mathbf{3}$ are shown below.

