This journal is (c) The Royal Society of Chemistry 2006

Supplementary NMR data

The ¹H NMR spectra were used to determine the concentration of the 1-alkyl-3-methylimidazolium salts in the upper phosphonium phase.

Effect of alkyl group

Representative examples of the change in solubility of 1,3-dimethylimidazolium, 1methyl-3-ethylimidazolium, 1-methyl-3-propylimidazolium, 1-methyl-3butylimidazolium, 1-methyl-3-(1-methylpropyl)-imidazolium, and 1-methyl-3pentylimidazolium chlorides in trihexyltetradecylphosphonium chloride are shown in Figures 1-6 respectively. The solubility was determined by comparing the integration of the imidazolium peaks at 10.7 (1H), 7-7-7.6 (1H + 1H), 4.4 (quartet or triplet – 2H {not dimethylimidazolium}), 4.1 (3H {or 6H for dimethylimidazolium}) with the phosphonium multiplet at 2.4-2.5 ppm (8H). From this a mol % composition of the two salts was determined and used in further calculations.

Figure 1. The ¹H NMR spectrum of [C₁mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 110 °C

This journal is (c) The Royal Society of Chemistry 2006

110 °C [C2mim]Cl in upper [phosphonium] Cl

Figure 2. The ¹H NMR spectrum of [C₂mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 110 °C

Figure 3. The ¹H NMR spectrum of [C₃mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 110 °C

This journal is (c) The Royal Society of Chemistry 2006

Figure 4. The ¹H NMR spectrum of $[n-C_4mim]Cl$ in $[C_{66614}P]Cl$ upper phase at 110 °C

This journal is (c) The Royal Society of Chemistry 2006

110 °C

Figure 5. The ¹H NMR spectrum of [s-C₄mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 110 °C

Figure 6. The ¹H NMR spectrum of [C₅mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 110 °C

This journal is (c) The Royal Society of Chemistry 2006

Effect of temperature

The NMR data for the solubility of 1-methyl-3-ethylimidazolium chloride in trihexyltetradecylphosphonium chloride at 50, 80, 110, 140, 160 and 170 °C are shown in Figures 7-12 respectively. The solubility was determined by comparing the integration of the imidazolium peaks at 10.7 (1H), 7-7-7.6 (1H + 1H), 4.4 (quartet), 4.1 (3H) with the phosphonium multiplet at 2.4-2.5 ppm (8H). From this a mol % composition of the two salts was determined and used in further calculations.

Figure 7. The ¹H NMR spectrum of [C₂mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 50 °C

[C2mim]Cl in upper [phosphonium] Cl

Figure 8. The ¹H NMR spectrum of [C₂mim]Cl in [C₆₆₆₁₄P]Cl upper phase at 80 °C

Figure 9. The ¹H NMR spectrum of $[C_2 mim]Cl$ in $[C_{66614}P]Cl$ upper phase at 110 °C

This journal is (c) The Royal Society of Chemistry 2006

Figure 11 The ¹H NMR spectrum of $[C_2mim]Cl$ in $[C_{66614}P]Cl$ upper phase at 160 °C

≢ 1.08

₽ 3.11 **₽** 2.11

¥ 1.00 } 117.67

} 76.12

Lower phase solubilities

The lower phases were also analysed by ¹H NMR, by comparing the phosphonium multiplet (8H) at 2.4-2.5 ppm with the imidazolium peaks at 4.0-4.5 ppm (3H and 2H). Two examples are given, showing the extremely low solubility of the $[C_{66614}P]Cl$ in 1-ethyl-3-methylimidazolium chloride (Figure 13) and 1-butyl-3-methylimidazolium chloride (Figure 14). These values are typically 10-50 lower that the solubility of the imidazolium chlorides in the phosphonium layer. The solubilities are so low that it is not possible to obtain meaningful data to calculate solubility trends.

This journal is (c) The Royal Society of Chemistry 2006

Figure 13. The solubility of $[C_{66614}P]Cl$ in $[n-C_2mim]Cl$ at 110 °C (solvent = CDCl₃ / CD₃OD). Solubility = 0.34 mol %.

Figure 14. The solubility of $[C_{66614}P]Cl$ in $[n-C_4mim]Cl$ at 110 °C (solvent = CDCl₃ / CD₃OD). Solubility = 0.48 mol %.