A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water

(Supporting Information)

Li-Jun Ma, Yi-Fu Liu , Yuqing Wu *

Experimental

1) Synthesis and Characterization

Synthesis and Characterization of N-[4(1-pyrene) butyroyl]-L-tryptophan (PLT)¹

L-tryptophan methyl ester (0.075 g, 0.345 mmol) was dissolved in anhydrous tetrahydrofuran (20 ml) and mixed with 4-(1-pyreny) butyric acid (0.1 g, 0.345 mmol) and dicyclohexylcarbodiimide (0.079 g, 0.383 mmol). The mixture was stirred 12h at room temperature and monitored by TLC (20:1, chloroform to methanol). After excess DCC was decomposed, the solvent was removed under reduced pressure. Purification of **PLT**-ester was performed by using column chromatography on silica gel (elution with 20:1, chloroform to methanol; R_f = 0.3). Mild hydrolysis of the **PLT**-ester (1 M HCI, 12 h, room temperature) followed by column chromatography on silica gel (elution with 5:1, chloroform to methanol; R_f = 0.5) resulted in a **PLT** in 40 % yield. The product was an aqua viscous solid. ¹H NMR (500 MHz, d₆-DMSO): δ = 8.344-7.844 (m, 9 H, Py (**H**)), δ = 7.519-6.848 (m, 5 H, Indole (**H**)), δ = 4.257 (m, 1 H, α -C**H**), δ = 3.231, 3.012 (m, 4 H, PyC**H**₂+C**H**₂Ar), δ = 2.215 (m, 2 H, C**H**₂CONH), δ = 1.930 ppm (m, 2 H, CH₂CH₂CH₂). Mass spectral data (MALDI-TOF-MS): for C₃₁H₂₆N₂O₃ calcd, 474.6; found 475.0. Specific optical rotation of **PLT**: [α]²²/₅₈₉ -21.3° (c 0.01, THF).

¹C. V. Kumar, A. Buranaprapuk and H. C. Sze, *Chem. Commum.* 2001, 297.

Synthesis and Characterization of N-[4(1-pyrene) butyroyl]-L-phenylalanine (PLP)

The **PLP** was synthesized by the reaction of the methyl ester of L-phenylalanine with 4(1-pyrene)butyric acid in tetrahydrofuran using DCC as the coupling agent in a procedure analogous to the synthesis of the **PLP** in ref. 1. ¹H NMR (500 MHz, d₆-DMSO): $\delta = 8.32$ -7.86 (m, 9 H, Py (H)), $\delta = 7.21$ -7.07 (m, 5 H, phenyl (H)), $\delta = 4.27$ (m, 1 H, α -CH), $\delta = 3.21$ -2.86 (m, 4 H, PyCH₂+CH₂Ar), $\delta = 2.22$ (m, 2 H, CH₂CONH), $\delta = 1.93$ ppm (m, 2 H, CH₂CH₂CH₂). Mass spectral data (MALDI-TOF-MS): for C₂₉H₂₅NO₃ calcd, 435.5; found 435.1. Specific optical rotation of **PLP**: [α]²²/₃₈₉ -32.9° (c 0.003, THF).

2) UV-vis Absorption Spectra

The measurements of UV-vis absorption spectra were carried out with a Lambda 800 Spectrophotometer.

Fig. 1 UV-vis absorption spectra of **PL**T ($5 \times 10^{-6} \text{ mol } \text{L}^{-1}$ in 98% water/2% DMSO (v/v)) in the (a) absence and (b) presence of Pb²⁺ ($8.2 \times 10^{-6} \text{ mol } \text{L}^{-1}$).

3) Fluorescence titration experiments

Fluorescence emission spectra were recorded on a computer-controlled SHIMADZU (Japan) RF-25301PC fluorescence spectrophotometer. A fixed maximum excitation wavelength at 340 nm was used. Fluorescence titration was performed in aqueous solution using respective chloride salt of metal ion. The concentration of **PLT** in all the fluorescent experiment is 5×10^{-6} mol L⁻¹ in 98% water/2% DMSO (v/v).

Fig. 2a Fluorescence spectra of **PLT** with the addition of Pb^{2+} .

Fig. 2b Fluorescence spectra of **PLT** with the addition of Ca^{2+} .

Fig. 2c Fluorescence spectra of **PLT** with the addition of Cd^{2+} .

Fig. 2e Fluorescence spectra of **PLT** with the addition of Cr^{3+} .

Fig. 2g Fluorescence spectra of **PLT** with the addition of K^+ .

Fig. 2d Fluorescence spectra of **PLT** with the addition of Co^{2+} .

Fig. 2f Fluorescence spectra of PLT with the addition of Cu^{2+} .

Fig. 2h Fluorescence spectra of **PLT** with the addition of Mg^{2+} .

Fig. 2i Fluorescence spectra of **PLT** with the addition of Na^+ .

Fig. 2k Fluorescence spectra of PLT with the addition of Mn^{2+} .

Fig. 2m Fluorescence spectra of **PLT** with the addition of Zn^{2+} .

Fig. 2j Fluorescence spectra of **PLT** with the addition of Fe^{2+} .

Fig. 21 Fluorescence spectra of PLT with the addition of Ni^{2+} .

Fig. 2n Fluorescence spectra of **PLT**, in the presence of Pb^{2+} (1.3 μ M), and the mixture of Pb^{2+} (1.3 μ M) and Cr^{3+} (10 μ M).

Fig. 20 Fluorescence spectra of PLT, in the presence of Pb^{2+} (1.3 μ M), and the mixture of Pb^{2+} (1.3 μ M) and Cu^{2+} (10 μ M).

Fig. 2p Fluorescence spectra of **PLT**, in the presence of Pb^{2+} (1.3 μ M), and the mixture of Pb^{2+} (1.3 μ M) and Mg^{2+} (10 μ M). The interference of other kinds of metal ions as Ca^{2+} , Cd^{2+} , Co^{2+} , K^+ , Na^+ , Fe^{2+} , Mn^{2+} , Ni^{2+} , and Zn^{2+} on Pb^{2+} are similar with Mg^{2+} (results are not shown).

900 800 100 100 125 125 142.86 173.91 100 100 142.86 173.91 100 100 100 11.25 142.86 173.91 100 100 100 100 11.25

Fig. 2q pH-dependence of the fluorescent response of the PLT/Pb²⁺ (the concentration of Pb²⁺ is 1.6 μ M).

Fig. 2r Fluorescence spectra of PLP (5 μ M) with the addition of Pb²⁺.

4) NMR Spectra of PLT with Pb²⁺

Ten equivalent of PbCl₂ was added to a solution of 5.5×10^{-3} mol L⁻¹ **PLT**, which was prepared by dissolving **PLT** in D₂O/DMSO-d₆ (1:2, v/v). ¹H NMR and ¹³C NMR were measured on a Bruker AM-500 spectrometer. All the spectra were recorded at room temperature.

Scheme 1. The chemical structure and atom numbering of PLT

Table 1. Proton chemical shifts^a (in ppm) of the **PLT** and its associated complex with Pb²⁺; atomic numbering is shown in **Scheme 1.**

	H (4)	H (7)	H(2)	H (5)	H (6)		α-C H				
PLT	7.551 d,	7.271 d,	7.156 s	6.950 t		6.855 t	4.448 m				
PLT+Pb ²⁺	7.585 d,	7.310 d,	7.219 s	7.014 t		6.939 t	4.514 f				
	PyC H ₂	C H ₂ Ar	C H 2CONH	CH ₂ C H ₂ C	:H ₂	Ру(H) [*]					
PLT	3.261 f	3.032 m	2.239 m	1.890 n	1.890 m		8.295 d, 8.250 d, 8.183 t 8.144 m, 8.095 t, 7.810 d				
PLT+Pb ²⁺	3.296 f	3.069 m	2.264 m	1.905 n	1.905 m		8.294 d, 8.247 d, 8.185 t 8.143 m, 8.094 t, 7.818 d				

* Of note is that there is no much chemical shifts were observed for pyrene protons upon the addition of Pb^{2+} , which may due to the high-concentration-induced random aggregation of PLT before the Pb^{2+} addition.

Table 2. Carbon-13 chemical shifts^a (in ppm) for the sensor **PLT** and its complex with Pb²⁺; Atomic numbering is shown in **Scheme 1**.

	C(7a)) C(3		a) ^b	^b C(2) ^b		C(5)		C(6)		C(4)		C(7)	C(3)
PLT	138.369	130.:		213 1		25.816	123.557		121.04	121.040 12		.997	113.866	113.351
PLT+Pb ²⁺	138.467	[,] 129.8		385	125.987		123.760		121.234		120.835		114.020	113.033
	C(10)	C((11)	C(9)	C(12)	C(8)		C(14)	С	(13)	C(15)		
PLT	183.901	175	5.457	58.6	72	37.723	34.463		31.897	30	.007	139.1	15, 133.480, 1	33.015,
												131.877, 130.654, 130.122 t		
												129.171d,127.593d, 126.765d		
PLT+Pb ²⁺	С	175	5.873	57.3	26	37.923	34.433		29.755	30	.058	139.0	63, 133.457, 1	32.979
												132.8	75, 130.636, 1	30.102 t
												129.1	85d,127.590d,	126.758d

a. The ¹H and ¹³C NMR assignment was made on the basis of HMQC (Heteronuclear Multiple Quantum Correlation) experiments and literature data (refs 7 in text); b. the peaks existed a part of overlap; c. no noted (it is due to intensely broadening upon Pb²⁺ binding of the sensor).