## A tryptophan-containing fluoroionophore sensor with high sensitivity to and selectivity for lead ion in water

## (Supporting Information)

Li-Jun Ma, Yi-Fu Liu , Yuqing Wu \*

## Experimental

#### 1) Synthesis and Characterization

## Synthesis and Characterization of N-[4(1-pyrene) butyroyl]-L-tryptophan (PLT)<sup>1</sup>

L-tryptophan methyl ester (0.075 g, 0.345 mmol) was dissolved in anhydrous tetrahydrofuran (20 ml) and mixed with 4-(1-pyreny) butyric acid (0.1 g, 0.345 mmol) and dicyclohexylcarbodiimide (0.079 g, 0.383 mmol). The mixture was stirred 12h at room temperature and monitored by TLC (20:1, chloroform to methanol). After excess DCC was decomposed, the solvent was removed under reduced pressure. Purification of **PLT**-ester was performed by using column chromatography on silica gel (elution with 20:1, chloroform to methanol;  $R_f$ = 0.3). Mild hydrolysis of the **PLT**-ester (1 M HCI, 12 h, room temperature) followed by column chromatography on silica gel (elution with 5:1, chloroform to methanol;  $R_f$ = 0.5) resulted in a **PLT** in 40 % yield. The product was an aqua viscous solid. <sup>1</sup>H NMR (500 MHz, d<sub>6</sub>-DMSO):  $\delta$  = 8.344-7.844 (m, 9 H, Py (**H**)),  $\delta$  = 7.519-6.848 (m, 5 H, Indole (**H**)),  $\delta$  = 4.257 (m, 1 H,  $\alpha$ -C**H**),  $\delta$  = 3.231, 3.012 (m, 4 H, PyC**H**<sub>2</sub>+C**H**<sub>2</sub>Ar),  $\delta$  = 2.215 (m, 2 H, C**H**<sub>2</sub>CONH),  $\delta$  = 1.930 ppm (m, 2 H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). Mass spectral data (MALDI-TOF-MS): for C<sub>31</sub>H<sub>26</sub>N<sub>2</sub>O<sub>3</sub> calcd, 474.6; found 475.0. Specific optical rotation of **PLT**: [ $\alpha$ ]<sup>22</sup>/<sub>589</sub> -21.3° (c 0.01, THF).

<sup>1</sup>C. V. Kumar, A. Buranaprapuk and H. C. Sze, *Chem. Commum.* 2001, 297.

#### Synthesis and Characterization of N-[4(1-pyrene) butyroyl]-L-phenylalanine (PLP)

The **PLP** was synthesized by the reaction of the methyl ester of L-phenylalanine with 4(1-pyrene)butyric acid in tetrahydrofuran using DCC as the coupling agent in a procedure analogous to the synthesis of the **PLP** in ref. 1. <sup>1</sup>H NMR (500 MHz, d<sub>6</sub>-DMSO):  $\delta = 8.32$ -7.86 (m, 9 H, Py (H)),  $\delta = 7.21$ -7.07 (m, 5 H, phenyl (H)),  $\delta = 4.27$  (m, 1 H,  $\alpha$ -CH),  $\delta = 3.21$ -2.86 (m, 4 H, PyCH<sub>2</sub>+CH<sub>2</sub>Ar),  $\delta = 2.22$  (m, 2 H, CH<sub>2</sub>CONH),  $\delta = 1.93$  ppm (m, 2 H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>). Mass spectral data (MALDI-TOF-MS): for C<sub>29</sub>H<sub>25</sub>NO<sub>3</sub> calcd, 435.5; found 435.1. Specific optical rotation of **PLP**: [ $\alpha$ ]<sup>22</sup>/<sub>389</sub> -32.9° (c 0.003, THF).

#### 2) UV-vis Absorption Spectra

The measurements of UV-vis absorption spectra were carried out with a Lambda 800 Spectrophotometer.



**Fig. 1** UV-vis absorption spectra of **PL**T ( $5 \times 10^{-6} \text{ mol } \text{L}^{-1}$  in 98% water/2% DMSO (v/v)) in the (a) absence and (b) presence of Pb<sup>2+</sup> ( $8.2 \times 10^{-6} \text{ mol } \text{L}^{-1}$ ).

#### 3) Fluorescence titration experiments

Fluorescence emission spectra were recorded on a computer-controlled SHIMADZU (Japan) RF-25301PC fluorescence spectrophotometer. A fixed maximum excitation wavelength at 340 nm was used. Fluorescence titration was performed in aqueous solution using respective chloride salt of metal ion. The concentration of **PLT** in all the fluorescent experiment is  $5 \times 10^{-6}$  mol L<sup>-1</sup> in 98% water/2% DMSO (v/v).



**Fig. 2a** Fluorescence spectra of **PLT** with the addition of  $Pb^{2+}$ .

**Fig. 2b** Fluorescence spectra of **PLT** with the addition of  $Ca^{2+}$ .



**Fig. 2c** Fluorescence spectra of **PLT** with the addition of  $Cd^{2+}$ .



**Fig. 2e** Fluorescence spectra of **PLT** with the addition of  $Cr^{3+}$ .



**Fig. 2g** Fluorescence spectra of **PLT** with the addition of  $K^+$ .



Fig. 2d Fluorescence spectra of PLT with the addition of  $Co^{2+}$ .



Fig. 2f Fluorescence spectra of PLT with the addition of  $Cu^{2+}$ .



**Fig. 2h** Fluorescence spectra of **PLT** with the addition of  $Mg^{2+}$ .



**Fig. 2i** Fluorescence spectra of **PLT** with the addition of  $Na^+$ .

![](_page_3_Figure_2.jpeg)

Fig. 2k Fluorescence spectra of PLT with the addition of  $Mn^{2+}$ .

![](_page_3_Figure_4.jpeg)

**Fig. 2m** Fluorescence spectra of **PLT** with the addition of  $Zn^{2+}$ .

![](_page_3_Figure_6.jpeg)

**Fig. 2j** Fluorescence spectra of **PLT** with the addition of  $Fe^{2+}$ .

![](_page_3_Figure_8.jpeg)

Fig. 21 Fluorescence spectra of PLT with the addition of  $Ni^{2+}$ .

![](_page_3_Figure_10.jpeg)

**Fig. 2n** Fluorescence spectra of **PLT**, in the presence of  $Pb^{2+}$  (1.3  $\mu$ M), and the mixture of  $Pb^{2+}$  (1.3  $\mu$ M) and  $Cr^{3+}$  (10  $\mu$ M).

![](_page_4_Figure_0.jpeg)

Fig. 20 Fluorescence spectra of PLT, in the presence of  $Pb^{2+}$  (1.3  $\mu$ M), and the mixture of  $Pb^{2+}$  (1.3  $\mu$ M) and  $Cu^{2+}$  (10  $\mu$ M).

![](_page_4_Figure_2.jpeg)

**Fig. 2p** Fluorescence spectra of **PLT**, in the presence of  $Pb^{2+}$  (1.3  $\mu$ M), and the mixture of  $Pb^{2+}$  (1.3  $\mu$ M) and  $Mg^{2+}$  (10  $\mu$ M). The interference of other kinds of metal ions as  $Ca^{2+}$ ,  $Cd^{2+}$ ,  $Co^{2+}$ ,  $K^+$ ,  $Na^+$ ,  $Fe^{2+}$ ,  $Mn^{2+}$ ,  $Ni^{2+}$ , and  $Zn^{2+}$  on  $Pb^{2+}$  are similar with  $Mg^{2+}$  (results are not shown).

![](_page_4_Figure_4.jpeg)

Fig. 2q pH-dependence of the fluorescent response of the PLT/Pb<sup>2+</sup> (the concentration of Pb<sup>2+</sup> is 1.6  $\mu$ M).

Fig. 2r Fluorescence spectra of PLP (5  $\mu$ M) with the addition of Pb<sup>2+</sup>.

# 4) NMR Spectra of PLT with Pb<sup>2+</sup>

Ten equivalent of PbCl<sub>2</sub> was added to a solution of  $5.5 \times 10^{-3}$  mol L<sup>-1</sup> **PLT**, which was prepared by dissolving **PLT** in D<sub>2</sub>O/DMSO-d<sub>6</sub> (1:2, v/v). <sup>1</sup>H NMR and <sup>13</sup>C NMR were measured on a Bruker AM-500 spectrometer. All the spectra were recorded at room temperature.

Scheme 1. The chemical structure and atom numbering of PLT

![](_page_5_Figure_3.jpeg)

**Table 1.** Proton chemical shifts<sup>a</sup> (in ppm) of the **PLT** and its associated complex with Pb<sup>2+</sup>; atomic numbering is shown in **Scheme 1.** 

|                      | <b>H</b> (4)   | <b>H</b> (7)               | H(2)             | <b>H</b> (5)                              | <b>H</b> (6)    |                             | α-C <b>H</b>                                           |  |  |  |  |
|----------------------|----------------|----------------------------|------------------|-------------------------------------------|-----------------|-----------------------------|--------------------------------------------------------|--|--|--|--|
| PLT                  | 7.551 d,       | 7.271 d,                   | 7.156 s          | 6.950 t                                   |                 | 6.855 t                     | 4.448 m                                                |  |  |  |  |
| PLT+Pb <sup>2+</sup> | 7.585 d,       | 7.310 d,                   | 7.219 s          | 7.014 t                                   |                 | 6.939 t                     | 4.514 f                                                |  |  |  |  |
|                      |                |                            |                  |                                           |                 |                             |                                                        |  |  |  |  |
|                      | PyC <b>H</b> ₂ | C <b>H</b> <sub>2</sub> Ar | C <b>H</b> 2CONH | CH <sub>2</sub> C <b>H</b> <sub>2</sub> C | :H <sub>2</sub> | Ру( <b>H</b> ) <sup>*</sup> |                                                        |  |  |  |  |
| PLT                  | 3.261 f        | 3.032 m                    | 2.239 m          | 1.890 n                                   | 1.890 m         |                             | 8.295 d, 8.250 d, 8.183 t<br>8.144 m, 8.095 t, 7.810 d |  |  |  |  |
| PLT+Pb <sup>2+</sup> | 3.296 f        | 3.069 m                    | 2.264 m          | 1.905 n                                   | 1.905 m         |                             | 8.294 d, 8.247 d, 8.185 t<br>8.143 m, 8.094 t, 7.818 d |  |  |  |  |

\* Of note is that there is no much chemical shifts were observed for pyrene protons upon the addition of  $Pb^{2+}$ , which may due to the high-concentration-induced random aggregation of PLT before the  $Pb^{2+}$  addition.

**Table 2.** Carbon-13 chemical shifts<sup>a</sup> (in ppm) for the sensor **PLT** and its complex with Pb<sup>2+</sup>; Atomic numbering is shown in **Scheme 1**.

|                      | C(7a)   | ) C(3              |       | a) <sup>b</sup> | <sup>b</sup> C(2) <sup>b</sup> |        | C(5)    |  | C(6)    |            | C(4)    |                             | C(7)           | C(3)     |
|----------------------|---------|--------------------|-------|-----------------|--------------------------------|--------|---------|--|---------|------------|---------|-----------------------------|----------------|----------|
| PLT                  | 138.369 | 130.:              |       | 213 1           |                                | 25.816 | 123.557 |  | 121.04  | 121.040 12 |         | .997                        | 113.866        | 113.351  |
| PLT+Pb <sup>2+</sup> | 138.467 | <sup>,</sup> 129.8 |       | 385             | 125.987                        |        | 123.760 |  | 121.234 |            | 120.835 |                             | 114.020        | 113.033  |
|                      |         |                    |       |                 |                                |        |         |  |         |            |         |                             |                |          |
|                      | C(10)   | C(                 | (11)  | C(9             | )                              | C(12)  | C(8)    |  | C(14)   | С          | (13)    | C(15)                       |                |          |
| PLT                  | 183.901 | 175                | 5.457 | 58.6            | 72                             | 37.723 | 34.463  |  | 31.897  | 30         | .007    | 139.1                       | 15, 133.480, 1 | 33.015,  |
|                      |         |                    |       |                 |                                |        |         |  |         |            |         | 131.877, 130.654, 130.122 t |                |          |
|                      |         |                    |       |                 |                                |        |         |  |         |            |         | 129.171d,127.593d, 126.765d |                |          |
| PLT+Pb <sup>2+</sup> | С       | 175                | 5.873 | 57.3            | 26                             | 37.923 | 34.433  |  | 29.755  | 30         | .058    | 139.0                       | 63, 133.457, 1 | 32.979   |
|                      |         |                    |       |                 |                                |        |         |  |         |            |         | 132.8                       | 75, 130.636, 1 | 30.102 t |
|                      |         |                    |       |                 |                                |        |         |  |         |            |         | 129.1                       | 85d,127.590d,  | 126.758d |

a. The <sup>1</sup>H and <sup>13</sup>C NMR assignment was made on the basis of HMQC (Heteronuclear Multiple Quantum Correlation) experiments and literature data (refs 7 in text); b. the peaks existed a part of overlap; c. no noted (it is due to intensely broadening upon Pb<sup>2+</sup> binding of the sensor).