Supplementary Information

Sulfamides and sulfamide polymers directly from sulfur dioxide

Alexander V. Leontiev, H. V. Rasika Dias, and Dmitry M. Rudkevich*

Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, TX 76019-0065, USA E-mail: rudkevich@uta.edu

General

X-ray analysis was performed on a Bruker Smart Apex CCD based X-ray diffractometer with the Oxford Cryosystem low temperature setup. FTIR spectra were measured on Bruker Vector 22 spectrometer in KBr. ¹H and ¹³C NMR spectra were recorded at 295K on JEOL 300 and 500 MHz spectrometers in CDCl₃ or DMSO- d_6 . Chemical shifts were measured relative to residual non-deuterated solvents resonances. SO₂ was purchased from AirGas, Inc. and dried prior the use by passing through P₂O₅. MS analyses were performed on an Agilent ESI-TOF spectrometer. CHN and Cl elemental analyses were done at QTI, Inc. Melting points were measured on a Mel-Temp II apparatus and are uncorrected.

General procedure for preparation of sulfamides 1a-o: SO_2 gas was bubbled through the ice-cold MeCN solution (5 mL) of Py or Et₃N (3 mmol) for 10 min. I₂ (1 mmol) was then added, and after it dissolved, arylamines **3a-o** (1 mmol) were added. The reaction mixture was stirred for 2 h at rt and then poured into 10% aq NaOH (20 mL). The pH of the solution was adjusted up to ~6 using citric acid and the product was extracted with CH_2Cl_2 (3 × 10 mL). Combined organic layers were washed with 2M aq HCl (3 × 10 mL) and brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave sulfamides **1a-o**, which were purified by recrystallization from $CHCl_3$ -hexane. In cases when the product was not soluble in CH_2Cl_2 , the solid material was collected by filtration, washed with 2N aq HCl, water and dried in vacuo.

Amine	Yield of 1a-o , % ^{<i>a</i>}		mn [°C]	Lit mp [°C]
7 unine	Pyridine	Et ₃ N		Lit. iii.p. [C]
Aniline 3a	60	79	110-112	109-110 ⁻¹
4-Me-aniline 3b	51	79	97-98	98-100 ¹
4-NO ₂ -aniline 3c	20	22	187-196 (dec)	195-197 (dec) ²
2,4,6-Me ₃ -aniline ^{d} 3d	60	87	152-160	164-166 ³
4-Br-aniline 3e	75	69	122-124	122-123 4
2,4,6- <i>t</i> -Bu ₃ -aniline 3f	n.d. ^c	n.d. ^c		
2-(CO_2Et)-aniline ^b 3g	43	62	97-99	

Table S1. Conversion of Arylamines 3 to N,N'-diarylsulfamides 1

4-Cl-aniline 3i	58	66	120-121	120-121 ²
4-MeO-aniline 3j	39	70	98-100	99-101 ¹
4-CF ₃ -aniline ^{<i>b</i>} 3 k	53	58	150-152	
4-CN-aniline 3 l	24	54	260-262 (dec)	168-170 (dec) ²
2-aminopyridine 3m	17	41	218-220	218-220 5
1-naphthylamine•HCl ^b 3n	32	35	167-168 (dec)	
<i>N</i> -Me aniline 3 0	n.d. ^c	n.d. ^c		

^{*a*}Isolated yields. ^{*b*}All new compounds were characterized by high-resolution ¹H and ¹³C NMR spectroscopy and CHN elemental microanalyses. ^{*c*}Not detected. ^{*d*}According to ³ the direct reaction between the sulfuryl chloride and 2,4,6 trimethylaniline did not yield 2,4,6,2',4',6'-hexamethylsulfanilide.

(2-(CO₂Et)-C₆H₄-NH)₂SO₂ (1g): mp 97-99 °C (from CHCl₃/hexane); ¹H NMR (500 MHz; CDCl₃): δ 10.9 (2 H, s, NH), 7.87 (2 H, dd, J = 8.3, J = 2.0, Ar), 7.71 (2 H, dd, J = 8.7, J = 1.0, Ar), 7.48 (2 H, ddd, J = 8.3, J = 8.7, J = 2.0, Ar), 7.00 (2 H, ddd, J = 8.3, J = 8.7, J = 1.0, Ar), 4.27 (4 H, q, J = 7.3, CH₂), 1.34 (6 H, t, J = 7.3, CH₃); ¹³C NMR (125 MHz; CDCl₃): δ 167.7, 140.2, 134.6, 131.1, 122.6, 118.4, 115.6, 61.6, 14.2; Found: C, 55.02; H, 5.05; N, 7.07. Calcd. for C₁₈H₂₀N₂O₆S: C, 55.09; H, 5.14; N, 7.14.

(4-CF₃-C₆H₄-NH)₂SO₂ (1k): mp 150-152 °C (from CHCl₃/hexane); ¹H NMR (500 MHz; DMSO-*d*₆): δ 11.1 (2 H, s, NH), 7.63 (4 H, d, J = 8.7, Ar), 7.29 (4 H, d, J = 8.7, Ar); ¹³C NMR (125 MHz; DMSO-*d*₆): δ 142.0, 127.0, 124.9, 123.6, 118.1; Found: C, 43.62; H, 2.49; N, 7.18. Calcd. for C₁₄H₁₀F₆N₂O₂S: C, 43.76; H, 2.62; N, 7.29.

(4-CN-C₆H₄-NH)₂SO₂ (11): mp 260-262 °C (decomp., from THF/hexane); ¹H NMR (300 MHz; DMSO- d_6): δ 11.2 (2 H, s, NH), 7.73 (4 H, d, J = 8.6, Ar), 7.23 (4 H, d, J = 8.6, Ar); ¹³C NMR (75 MHz; DMSO- d_6): δ 142.5, 134.2, 119.3, 117.9, 105.3; Found: C, 55.73; H, 3.33; N, 18.48. Calcd. for C₁₄H₁₀N₄O₂S: C, 56.37; H, 3.38; N, 18.78.

(1-Napthyl-NH)₂SO₂(1n): mp 167-168 °C (decomp., from acetone/hexane); ¹H NMR (500 MHz; DMSO- d_6): δ 10.0 (2 H, s, NH), 8.00 (2 H, d, J = 8.7, Ar), 7.8 (2 H, d, J = 7.8, Ar), 7.73 (2 H, d, J = 7.8, Ar), 7.59 (2 H, d, J = 7.3, Ar), 7.46 (4 H, m, Ar), 7.34 (2 H, ddd, J = 7.8, J = 7.3, J = 1.0, Ar); ¹³C NMR (125 MHz; DMSO- d_6): δ 134.4, 133.9, 128.7, 128.4, 126.6, 126.2, 126.1, 126.0, 123.5, 120.8; Found: C, 68.18; H, 4.51; N, 7.96. Calcd. for C₂₀H₁₆N₂O₂S: C, 68.95; H, 4.63; N, 8.04.

Preparation of poly(phenylenesulfamide) 2: SO_2 gas was bubbled through the ice-cold MeCN solution (10 mL) of Et_3N (12 mmol, 1.69 mL, 1.21 g) for 20 min. I_2 (4 mmol, 1.05 g) was then added, and after it dissolved, *p*-phenylenediamine **4** (2 mmol, 0.22 g) was added. The reaction mixture was stirred for 2 h at rt and then poured

into 10% aq NaOH (40 mL). The pH of the solution was adjusted up to ~6 using citric acid and the solid material was collected by filtration. The light brown product was dissolved in 1M NaOH and reprecipitated then with 1M HCl twice. The polymer was washed with water in a centrifuge tube until washing were eventually neutral. Drying in vacuo at 60 °C gave the polymer **2** (0.125 g, 35%): mp 190-205 °C (decomp.); ¹H NMR (300 MHz; DMSO- d_6): δ 8.96 (m, NH), 6.96 (m, Ar); FTIR (KBr, cm⁻¹): v 3277 (NH), 1325 and 1152 (S=O); Found: C, 39.96; H, 3.63; N, 14.15; Cl, 3.96. Calcd. for C₆₆H₇₀N₂₂O₂₀S₁₀Cl₂: C, 42.10; H, 3.75; N, 16.36; Cl, 3.77.

Procedure for preparation of sulfamide oligomers 5 and 6. Method A. Ph-NHSO₂NH-C₆H₄-NHSO₂NH-Ph (5): To the ice-cold solution of phenylsulfamoyl chloride⁶ PhNHSO₂Cl (2.2 mmol, 0.42 g) in CH₂Cl₂ (5 mL) the CH₂Cl₂ solution (5 mL) of *p*-phenylenediamine **4** (1 mmol, 0.11 g) and Et₃N (2.4 mmol, 0.34 mL, 0.24 g) was added dropwise. The reaction mixture was stirred for overnight at rt and the solvent was removed under reduced pressure. The residue was dissolved in EtOAc (10 mL) and washed with 1N HCl (3 × 3 mL) and brine (3 × 3 mL) and dried over anhydrous Na₂SO₄. Evaporation of solvent leaved a solid which was purified by column chromatography (SiO₂, AcOEt/hexane = 2/1, R_f = 0.5) to give the triphenyldisulfamide **5** (0.19 g, 45%); mp. 190-

194 °C (decomp., from AcOEt/hexane); ¹H NMR (500 MHz; DMSO- d_6): δ 10.07 (2 H, s, NH), 10.00 (2 H, s, NH), 7.24 (4 H, dd, J = 7.3, J = 7.3, Ar), 7.10 (4 H, dd, J = 7.3, J = 2.0, Ar), 6.98 (2 H, m, Ar), 6.97 (4 H, s, Ar); ¹³C NMR (125 MHz; DMSO- d_6): δ 138.8, 134.1, 129.5, 123.3, 120.7, 118.8; FTIR (KBr, cm⁻¹): v 3279 (NH), 1319 and 1147 (S=O); ESI-TOF, m/z 441.0652 (calcd. for C₁₈H₁₈N₄O₄S₂Na, 441.0662); Found: C, 50.75; H, 4.33; N, 12.89; Calcd. for C₁₈H₁₈N₄O₄S₂: C, 51.66; H, 4.34; N, 13.39.

(**Ph-NHSO**₂**NH-C**₆**H**₄-**NH**)₂**SO**₂ (6): **Step 1** (**BocNH-C**₆**H**₄-**NH**)₂**SO**₂: SO₂ gas was bubbled through the icecold MeCN solution (5 mL) of Et₃N (3 mmol, 0.43 mL, 0.31 g) for 10 min. I₂ (1 mmol, 0.25 g) was then added, and after it dissolved, monoprotected Boc phenylenediamine⁷ (1 mmol, 0.21 g) was added. The reaction mixture was stirred for 2 h at rt and then poured into 10% aq NaOH (20 mL). The pH of the solution was adjusted up to ~6 using citric acid and the product was extracted with CH₂Cl₂ (3 × 10 mL). Combined organic layers were washed with 10% citric acid solution (3 × 10 mL) and brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave light brown solid material, which were purified by column chromatography (SiO₂, AcOEt/hexane = 2/1) to give the product (0.101 g, 42%); mp. 124-130 °C (from AcOEt/hexane); ¹H NMR (500 MHz; DMSO-*d*₆): δ 9.78 (2 H, s, NH), 9.19 (2 H, s, NH), 7.29 (4 H, d, *J* = 9.1, Ar), 6.96 (4 H, d, *J* = 9.1, Ar), 1.45 (18 H, s, CH₃); ¹³C NMR (125 MHz; DMSO-*d*₆): δ 153.4, 135.7, 133.0, 120.4, 119.4, 79.4, 28.7; FTIR (KBr, cm⁻¹): v 3287 (NH), 1699 (C=O); 1369 and 1154 (S=O); Found: C, 55.24; H, 6.38; N, 10.59; Calcd. for C₂₂H₃₀N₄O₆S: C, 55.22; H, 6.32; N, 11.71.

Step 2 (**HCl•NH**₂-**C**₆**H**₄-**NH**)₂**SO**₂: To the ice cold solution of MeOH (5 mmol, 0.2 mL, 0.16 g) in 5 mL of CH₂Cl₂ acetyl chloride (1.7 mmol, 0.12 mL, 0.14 g) was added dropwise and the reaction mixture was stirred for 30 min. Then the solution of (BocNH-C₆H₄-NH)₂SO₂ (0.2 mmol, 0.095 g) in CH₂Cl₂ (5 mL) was added and the reaction mixture was stirred at rt until TLC (AcOEt/hexane = 2/1) showed that starting material disappeared. Solvent was removed under reduced pressure and the residue was recrystallized from MeOH/ether to give white crystals of (HCl•NH₂-C₆H₄-NH)₂SO₂: (0.064 g, 91%); mp. 170-174 °C (decomp., from MeOH/ether; ¹H NMR (300 MHz; DMSO-*d*₆): δ 10.43 (2 H, s, NH,), 9.83 (6 H, br, NH), 7.18 (4 H, d, *J* = 8.9, Ar), 7.12 (4 H, d, *J* = 8.9, Ar); ¹³C NMR (75 MHz; DMSO-*d*₆): δ 138.0, 127.4, 124.4, 119.6; FTIR (KBr, cm⁻¹): v 2862 (NH), 1313 and 1154 (S=O).

Step 3 (Ph-NHSO₂NH-C₆H₄-NH)₂SO₂ (6): To the ice-cold solution of phenylsulfamoyl chloride PhNHSO₂Cl (0.31 mmol, 0.06 g) in MeCN (3 mL), the MeCN solution (3 mL) of (HCl•NH₂-C₆H₄-NH)₂SO₂ (0.14 mmol, 0.05 g) and Et₃N (0.62 mmol, 0.09 mL, 0.62 g) was added dropwise. The reaction mixture was stirred for overnight at rt, concentrated under reduced pressure, redissolved in EtOAc (10 mL) and then washed with 1N HCl (3 × 3 mL), brine (3 × 3 mL) and dried over anhydrous Na₂SO₄. Evaporation of solvent gave a light brown solid, which was purified by column chromatography (SiO₂, AcOEt/hexane = 2/1, R_f = 0.3) to give the tetraphenyltrisulfamide **6** (0.034 g, 41%): mp. 200-210 °C (decomp., from AcOEt/hexane); ¹H NMR (500 MHz; DMSO-*d*₆): δ 10.07 (2 H,

s, NH), 10.00 (2 H, s, NH), 9.88 (2 H, s, NH), 7.24 (4 H, dd, J = 7.8, J = 7.8, Ar), 7.09 (4 H, d, J = 7.8, Ar), 6.97 (10 H, m, Ar); ¹³C NMR (125 MHz; DMSO- d_6): δ 138.8, 134.2, 134.0, 129.5, 123.3, 120.7, 120.6, 118.8; FTIR (KBr, cm⁻¹): v 3301 (NH), 1329 and 1152 (S=O); ESI-TOF, m/z 587.0833 (calcd. for C₂₄H₂₃N₆O₆S₃, [M-H] 587.0847); Found: C, 48.80; H, 4.18; N, 13.92; Calcd. for. C₂₄H₂₄N₆O₆S₃ C, 48.97; H, 4.11; N, 14.28.

Procedure for preparation of sulfamides 5 and 6. Method B: The ice-cold MeCN solution (10 mL) of Et₃N (6.6 mmol, 0.93 mL, 0.66 g), p-phenylenediamine **4** (1 mmol, 0.11 g) and aniline PhNH₂ (2.2 mmol, 0.2 mL, 0.21 g) was saturated by SO₂ gas (20 min) and then I₂ (2.2 mmol, 0.56 g) was added. After 2 h of stirring at rt the reaction mixture was poured into 10% aq NaOH (20 mL). Citric acid was used to bring the pH of solution to ~6, which was extracted then by ethyl acetate (3 × 10 mL). Combined organic layers were washed with 2M aq HCl (3 × 10 mL) and brine (3 × 10 mL) and dried over anhydrous Na₂SO₄. After evaporation of the solvent under the reduced pressure the residue was chromatographed (SiO₂, AcOEt/hexane = 2/1) to get diphenylsulfamide **1a** (0.109 g, 40%), triphenyldisulfamide **5** (0.016 g, 4%) and tetraphenyltrisulfamide **6** (0.009 g, 3%).

X-ray Structure Determinations. A suitable crystal covered with a layer of hydrocarbon oil was selected and mounted with paratone-N oil on a cryo-loop, and immediately placed in the low-temperature nitrogen stream. The X-ray intensity data were measured at 100(2) K on a Bruker SMART APEX CCD area detector system equipped with a Oxford Cryosystems 700 Series Cryostream cooler, a graphite monochromator, and a Mo K α fine-focus sealed tube ($\lambda = 0.71073$ Å). The detector was placed at a distance of 5.995 cm from the crystal. The data frames were integrated with the Bruker SAINT-Plus software package. Data were corrected for absorption effects using the multi-scan technique (SADABS). Structures were solved and refined using Bruker SHELXTL (Version 6.14) software package. Some details of the data collection and refinement are given in Tables S1-2. Further details are in the cif files.

Table S2. Crystal data and structure refinement for (Ph-NH)₂SO₂.

Identification code	dias266s	
Empirical formula	C12 H12 N2 O2 S	
Formula weight	248.30	
Temperature	100(2) K	
Wavelength	0.71073	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.0786(6)	α= 78.4390(10);.
	b = 11.3145(7)	$\beta = 72.4410(10)$;
	c = 11.3378(7)	$\gamma = 74.6320(10)$;
Volume	1178.34(12) 3	
Z	4	

Density (calculated)	1.400 Mg/m ³
Absorption coefficient	0.265 mm ⁻¹
F(000)	520
Crystal size	0.37 x 0.32 x 0.07 mm ³
Theta range for data collection	1.88 to 26.00j.
Index ranges	-12<=h<=12, -13<=k<=13, -13<=l<=13
Reflections collected	9448
Independent reflections	4608 [R(int) = 0.0196]
Completeness to theta = 26.00 ;	99.5 %
Absorption correction	None
Max. and min. transmission	0.9814 and 0.9082
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4608 / 0 / 323
Goodness-of-fit on F ²	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0371, $wR2 = 0.0929$
R indices (all data)	R1 = 0.0442, wR2 = 0.0988
Largest diff. peak and hole	0.426 and -0.441 e. $^{-3}$

Table S3. Crystal data and structure refinement for $Ph-NHSO_2NH-C_6H_4-NHSO_2NH-Ph$.

Identification code	dias326s		
Empirical formula	C24 H30 N4 O6 S2		
Formula weight	534.64		
Temperature	100(2) K		
Wavelength	0.71073		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 8.8506(6)	$\alpha = 90$ j.	
	b = 9.9988(7)	$\beta = 101.1520(10);$	
	c = 15.2627(11)	$\gamma = 90$	
Volume	1325.17(16) 3		
Z	2		
Density (calculated)	1.340 Mg/m ³		
Absorption coefficient	0.246 mm ⁻¹		
F(000)	564		
Crystal size	0.38 x 0.24 x 0.11 mm ³		
Theta range for data collection	2.35 to 25.99 _i .		
Index ranges	-10<=h<=10, -12<=k<=12, -18<=l<=18		
Reflections collected	9052		
Independent reflections	2571 [R(int) = 0.021	1]	

Completeness to theta = 25.99; Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole 98.7 % None 0.9734 and 0.9126 Full-matrix least-squares on F² 2571 / 0 / 173 1.075 R1 = 0.0362, wR2 = 0.0927 R1 = 0.0407, wR2 = 0.0970 0.292 and -0.408 e. ⁻³

Figure S1: ORTEP diagrams of **1a**, top (two molecules in the symmetric unit) and **5**, bottom (crystallizes with two acetone molecules).

Unfortunately, thus far, we have not been able to obtain high quality crystals of compound **6** for detailed X-ray crystallographic work. Nevertheless, the X-ray data collected on the poorly diffracting samples clearly show the basic backbone of the tetramer. It adopts a W-shaped structure as illustrated in Figure S2.

Figure S2. Molecular structure of the tetramer 6 showing the W-shaped backbone

REFERENCES

- 1 W. J. Spillane, J. A. Barry, F. L. Scott, J. Chem. Soc., Perkin Trans. 2, 1973, 481-483.
- E. W. Parnell, J. Chem. Soc., 1960, 4366-4368.
 R. A. Abramovitch, T. Chellathurai, W. D. Holcomb, I. T. McMaster, D. P. Vanderpool, J. Org. Chem., 1977, 42, 2920-2926.
- 4 B. H. Chase, W. T. Weller, J. Pharm. Pharmacol., 1964, 16, 163-173.
- 5 W. J. Spillane, J. A. Barry, W. A. Heaphy, F. L. Scott, Z. Naturforsch., Teil B, 1974, 29, 702-703.
- 6 J. A. Kloek, K. L. Leschinsky, J. Org. Chem., 1976, 41, 4028-4029.
- A. Renodon-Corniere, S. Dijols, C. Perollier, D. Lefevre-Groboillot, J.-L. Boucher, R. Attias, M.-A. Sari,
 D. Stuehr, D. Mansuy, *J. Med. Chem.*, 2002, 45, 944-954.