Encoding calamitic mesomorphism in thermotropic lanthanidomesogens.

Emmanuel Terazzi, Bernard Bocquet, Stéphane Campidelli, Bertrand Donnio, Daniel Guillon, Robert Deschenaux,^{*} and Claude Piguet^{*}

Electronic Supporting Information (ESI)

(13 pages)

Solvents, Starting Materials, and Syntheses.

Chemicals were purchased from Fluka AG and Aldrich, and used without further purification unless otherwise stated. The synthons $1,^{1} 4,^{2}$ and 5^{3} were prepared according to literature procedures. Silicagel (Acros, 0.035-0.07 mm) was used for preparative column chromatography. The nitrate salts $Ln(NO_{3})_{3} \cdot xH_{2}O$ (Ln = Lu, Tb, Gd and Eu, x = 1-4) were prepared from the corresponding oxides (Rhodia, 99.99%).⁴ The Ln content of solid salts was determined by complexometric titrations with Titriplex III (Merck) in the presence of urotropine and xylene orange.⁵ Acetonitrile and dichloromethane were distilled over calcium hydride.

Preparation of synthom 2

To a solution of 4-carboxybenzaldehyde (0.32 g, 2.12 mmol), DCC (1.09 g, 5.30 mmol) and 4-DMAP (catalytic) in CH₂Cl₂ (100 ml), **1** (1.00 g, 2.12 mmol) was added. After 15 minutes stirring at room temperature, the solution was refluxed for 16 hours. The solvent was evaporated, and the solid residue purified by column chromatography (CH₂Cl₂/MeOH 100:0 and then 99.6: 0.4) to give **2** (0.42 g, yield: 33%).

¹H NMR in CDCl₃ : 1.30-1.56 (12H, m) ; 1.78-1.88 (4H, m) ; 4.07 (2H, t, J^3 =6.4 Hz) ; 4.38 (2H, t, J^3 =6.8 Hz) ; 7.00 (2H, d, J^3 =9.2 Hz) ; 7.34 (2H, d, J^3 =8.4 Hz) ; 7.66 (2H, d, J^3 =8.4 Hz) ; 7.71 (2H, d, J^3 =8.4 Hz) ; 7.76 (2H, d, J^3 =8.4 Hz) ; 7.97 (2H, d, J^3 =8.0 Hz) ; 8.17 (2H, d, J^3 =8.8 Hz) ; 8.22 (2H, d, J^3 =8.0 Hz) ; 10.13 (1H, s). ¹³C NMR in CDCl₃: (C_{prim}) 26.02 ; 28.67 ; 29.12 ; 29.26 ; 29.35 ; 29.46 ; 29.49 ; 65.77 ; 68.36 (C_{sec}) 114.38 ; 122.59 ; 127.71 ; 128.37 ; 129.53 ; 130.17 ; 132.38 ; 132.68 (C_{tert}) 111.00 ; 118.92 ; 121.24 ; 135.49 ; 136.72 ; 139.10 ; 144.88 ; 151.60 ; 163.71 ; 164.85 ; 165.65 ; 191.69 (C_{quat}). ESI-MS (CH₂Cl₂/MeOH 9:1): m/z = 626.5 ([M+Na]⁺).

Preparation of synthon 3

2 (0.35 g, 0.58 mmol), NaClO₂ (0.20 g, 2.19 mmol) and H₂NSO₃H (0.21 g, 2.19 mmol) were dissolved in a THF/H₂O (1:1) mixture (100 ml). The solution was stirred at room temperature for 2 hours. THF was evaporated under vacuum. The aqueous phase was extracted with hot CH₂Cl₂ (100

ml) in order to avoid precipitation. The organic phase was dried with anhydrous Na_2SO_4 and filtered. Evaporation to dryness gave **3** (0.35 g, yield: 97%).

¹H NMR in *d*⁶-DMSO : 1.26-1.47 (12H, m) ; 1.69-1.77 (4H, m) ; 4.08 (2H, t, J^3 =6.4 Hz) ; 4.30 (2H, t, J^3 =6.4 Hz) ; 7.13 (2H, d, J^3 =8.8 Hz) ; 7.42 (2H, d, J^3 =8.8 Hz) ; 7.85 (2H, d, J^3 =8.4 Hz) ; 7.91-7.97 (4H, m) ; 8.07 (4H, s) ; 8.09 (2H, d, J^3 =8.8 Hz) 13.36 (1H, br). ¹³C NMR in CDCl₃ : (C_{prim}) 26.01 ; 28.66 ; 29.11 ; 29.24 ; 29.34 ; 29.44 ; 29.47 ; 65.71 ; 68.36 (C_{sec}) 114.38 ; 122.60 ; 127.72 ; 128.37 ; 129.64 ; 130.18 ; 132.39 ; 132.68 (C_{tert}) 111.00 ; 118.92 ; 121.22 ; 132.80 ; 135.11 ; 136.73 ; 144.90 ; 151.59 ; 163.71 ; 164.89 ; 165.76 ; 170.47 (C_{quat}). ESI-MS (CH₂Cl₂/MeOH 9:1): m/z = 642.5 ([M+Na]⁺).

Preparation of synthon 6

5 (1.00 g, 0.67 mmol), NaClO₂ (0.23 g, 2.50 mmol) and H₂NSO₃H (0.24 g, 2.50 mmol) were dissolved in a THF / H₂O (2:1) mixture (50 ml). The solution was stirred at room temperature for 2 hours. THF was evaporated under vacuum. The aqueous phase was extracted with CH₂Cl₂ (100 ml). The organic phase was dried with anhydrous Na₂SO₄ and filtered. Evaporation to dryness followed by precipitation (dissolution in CH2Cl2 and precipitation by pouring the solution into MeOH) gave **6** (1.01 g, yield: 100%).

¹H NMR in CDCl₃ : 1.37-1.49 (36H, m) ; 1.77-1.90 (12H, m) ; 4.06 (6H, t, J^3 =6.8 Hz) ; 4.38 (6H, t, J^3 =6.8 Hz) ; 6.97 (4H, d, J^3 =8.8 Hz) ; 6.98 (2H, d, J^3 =9.2 Hz) ; 7.33 (4H, d, J^3 = 8.8 Hz) ; 7.64 (4H, d, J^3 =8.8 Hz) ; 7.71 (4H, d, J^3 =8.4 Hz) ; 7.74 (4H, d, J^3 =8.8 Hz) ; 8.09 (2H, d, J^4 =1.2 Hz) ; 8.14-8.20 (10H, m) ; 8.62 (1H, t, J^4 =1.2 Hz). ¹³C NMR in CDCl₃ : (C_{prim}) 25.98 ; 26.01 ; 28.67 ; 29.11 ; 29.26 ; 29.36 ; 29.45 ; 29.49 ; 65.70 ; 65.81 ; 68.37 ; 68.40 (C_{sec}) 114.40 ; 114.47 ; 122.60 ; 127.37 ; 127.70 ; 127.95 ; 128.36 ; 129.62 ; 130.15 ; 132.38 ; 132.47 ; 132.67 (C_{tert}) 100.01 ; 110.98 ; 118.91 ; 120.76 ; 121.19 ; 132.35 ; 132.99 ; 135.01 ; 136.68 ; 144.86 ; 151.11 ; 151.60 ; 163.73 ; 163.89 ; 164.59 ; 164.88 ; 165.15 ; 165.78 ; 170.42 (C_{quat}). ESI-MS (CH₂Cl₂/MeOH 9:1): m/z = 1538.8 ([M+Na]⁺).

Preparation of L3.

4 (0.097 g, 0.24 mmol) was added to a solution of **3** (0.30 g, 0.48 mmol), EDCI (0.19 g, 0.97 mmol) and 4-DMAP (catalytic) in CH₂Cl₂ (50 ml). After 15 minutes stirring at room temperature, the solution was refluxed for 12 hours under an inert atmosphere. The solvent was evaporated and the organic residue redissolved in CH₂Cl₂ (100 ml). The organic phase was washed with water (3 x 100 ml), dried with anhydrous Na₂SO₄, filtered and evaporated under vacuum. The residue was purified by column chromatography (CH₂Cl₂/MeOH 100:0, 99.5:0.5, 99.3:0.7 and finally 99:1) to give L3 (0.30 g, yield: 77%).

¹H NMR in CDCl₃: 1.39-1.47 (16H, m) ; 1.43 (6H, t, $J^3=7.2$ Hz) ; 1.47-1.52 (8H, m) ; 1.81-189 (8H, m) ; 4.08 (4H, t, $J^3=6.8$ Hz) ; 4.41 (4H, t, $J^3=6.8$ Hz) ; 4.83 (4H, q, $J^3=7.2$ Hz) ; 7.02 (4H, d, $J^3=8.8$ Hz) ; 7.26 (2H, dd, $J^3=8.8$ Hz, $J^4=2.0$ Hz) ; 7.35 (4H, d, $J^3=8.8$ Hz) ; 7.54 (2H, d, $J^3=8.8$ Hz) ; 7.66 (4H, d, $J^3=8.8$ Hz) ; 7.70 (4H, d, $J^3=8.4$ Hz) ; 7.74 (2H, d, $J^4=2.0$ Hz) ; 7.75 (4H, d, $J^3=8.4$ Hz) ; 8.11 (1H, t, $J^3=8.0$ Hz) ; 8.17 (4H, d, $J^3=9.2$ Hz) ; 8.22 (4H, d, $J^3=8.4$ Hz) ; 8.37 (4H, d, $J^3=8.4$ Hz) ; 8.38 (2H, d, $J^3=8.0$ Hz). ¹³C NMR in CDCl₃ : 15.53 (C_{prim}) 26.02 ; 26.04 ; 28.69 ; 29.12 ; 29.28 ; 29.36 ; 29.47 ; 29.50 ; 40.13 ; 65.73 ; 68.37 (C_{sec}) 110.67 ; 112.92 ; 114.39 ; 118.05 ; 122.60 ; 126.13 ; 127.71 ; 128.37 ; 129.71 ; 130.23 ; 132.38 ; 132.67 ; 138.38 (C_{tert}) 111.00 ; 118.92 ; 121.22 ; 133.34 ; 134.89 ; 136.72 ; 144.89 ; 146.78 ; 151.59 ; 163.71 ; 164.87 ; 165.04 ; 165.83 (C_{quat}). ESI-MS (CH₂Cl₂/MeOH 9:1): m/z = 1603.8 ([M+H]⁺). Anal Calcd for C₉₉H₉₁N₇O₁₄·1.3 H₂O : C, 73.14; H, 5.80; N, 6.03. Found : C, 73.15; H, 5.84; N 5.91.

Preparation of L4.

4 (0.040 g, 0.10 mmol) was added to a solution of **6** (0.30 g, 0.20 mmol), EDCI (0.076 g, 0.40 mmol) and 4-DMAP (catalytic) in CH₂Cl₂ (50 ml). After 15 minutes stirring at room temperature, the solution was refluxed for 12 hours under an inert atmosphere. The solvent was evaporated and the organic residue redissolved in CH₂Cl₂ (100 ml). The organic phase was washed with water (4 x 100 ml), dried with anhydrous Na₂SO₄, filtered and then evaporated under vacuum. The residue was purified by column chromatography (CH₂Cl₂:MeOH 100:0 and finally 99.5:1.5). The product was

dissolved in a minimum volume of CH_2Cl_2 and poured into acetone. Pure L4 was filtered and dried under vacuum at 100 °C (0.024 g, yield: 70%).

¹H NMR in CDCl₃ : 1.31-1.57 (72H, m) ; 1.45 (6H, t, J^3 =7.2 Hz) ; 1.77-1.91 (24H, m) ; 4.04-4.09 (12H, m) ; 4.36-4.42 (12H, m) ; 4.85 (4H, q, J^3 =7.2 Hz) ; 7.00 (8H, d, J^3 = 8.8 Hz) ; 7.01 (4H, d, J^3 =8.4 Hz) ; 7.28 (2H, dd, J^3 =8.8 Hz, J^4 =2.0 Hz) ; 7.33 (8H, d, J^3 =8.4 Hz) ; 7.54 (2H, d, J^3 =8.8 Hz, J^4 =2.0 Hz) ; 7.33 (8H, d, J^3 =8.4 Hz) ; 7.54 (2H, d, J^3 =8.8 Hz) ; 7.64 (8H, d, J^3 =8.4 Hz) ; 7.71 (8H, d, J^3 =8.4 Hz) ; 7.74 (2H, d, J^4 =2.0 Hz) ; 7.75 (8H, d, J^3 =8.4 Hz) ; 8.08 (2H, d, J^4 =1.2 Hz) ; 8.11 (1H, t, J^3 =8.0 Hz) ; 8.18 (12H, d, J^3 =8.8 Hz) ; 8.23 (4H, d, J^3 =8.4 Hz) ; 8.37 (4H, d, J^3 =8.4 Hz) ; 8.40 (2H, d, J^3 =8.0 Hz). ¹³C NMR in CDCl₃ : 0.98 (C_{prim}) 15.45 ; 25.90 ; 25.92 ; 25.96 ; 25.97 ; 28.61 ; 28.63 ; 29.04 ; 29.18 ; 29.22 ; 29.28 ; 29.31 ; 29.37 ; 29.41 ; 29.44 ; 40.02 ; 65.64 ; 65.70 ; 68.31 ; 68.35 (C_{sec}) 110.56 ; 112.92 ; 114.33 ; 114.41 ; 117.87 ; 122.52 ; 125.95 ; 127.28 ; 127.64 ; 127.87 ; 128.29 ; 129.65 ; 130.16 ; 132.31 ; 132.39 ; 132.61 ; 138.25 (C_{tert}) 110.96 ; 118.83 ; 120.73 ; 121.17 ; 134.07 ; 136.64 ; 143.18 ; 144.82 ; 150.97 ; 151.06 ; 151.56 ; 163.66 ; 163.84 ; 164.51 ; 164.78 ; 164.97 ; 165.05 ; 165.76 (C_{quat}). Anal Calcd for C₂₀₉H₂₀₉N₉O₃₄·1.39 H₂O: C, 73.49; H, 6.25; N, 3.69. Found : C, 73.49; H, 6.23; N 3.57.

Preparation of the Complexes $[Ln(Li)(NO_3)_3]$ (Ln = Lu, Tb, Gd and Eu, i = 3, 4)

L1 (1.0 equivalent, typically 100 mg) in dichloromethane (5 mL) was added to one equivalent $Ln(NO_3)_3$ ·xH₂O (Ln = Lu, Tb, Gd and Eu, 1.0 equivalent) in acetonitrile (5 mL). After 1 h. stirring at RT, the dichloromethane was evaporated and the white precipitate was filtered, washed with CH₃CN and dried to give 80-90 % of [Ln(L*i*)(NO₃)₃] (Ln = Lu, Tb, Gd and Eu, *i* = 3, 4) containing variable quantities of co-crystallized water molecules. All the complexes were characterized by IR spectra and elemental analyses (Table S1).

Spectroscopic and Analytical Measurements.

¹H and ¹³C NMR spectra were recorded at 25 °C on a Bruker Avance 400 MHz spectrometer. Chemical shifts are given in ppm with respect to TMS. Diffusion experiments were recorded at 400-MHz-proton-Larmor frequency at room temperature. The sequence corresponds to Bruker pulse program *ledbpgp2s* ⁶ using stimulated echo, bipolar gradients and longitudinal eddy current

delay as z filter. The four 2 ms gradients pulses have sine-bell shapes and amplitudes ranging linearly from 2.5 to 50 G/cm in 16 steps. The diffusion delay was 100 ms and the number of scan 16. The processing was done using a line broadening of 5 Hz and the diffusion rates calculated using the Bruker processing package. Pneumatically-assisted electrospray (ESI-MS) mass spectra were recorded from 10⁻⁴ mol·dm⁻³ solutions on a Finnigan SSQ7000 instrument. TG were performed with a thermogravimetric balance Seiko TG/DTA 320 (under N₂). DSC traces were obtained with a Seiko DSC 220C differential scanning calorimeter from 3-5 mg samples (5 °C·min⁻ The characterizations of the mesophases were performed with a polarizing microscope Leitz Orthoplan-Pol with a Leitz LL 20x/0.40 polarizing objective, and equipped with a Linkam THMS 600 variable-temperature stage. The SA-XRD patterns were obtained with three different experimental set-ups. In all cases, a linear monochromatic Cu-K α beam ($\lambda = 1.5405$ Å) was obtained using a sealed-tube generator (900 W) equipped with a bent quartz monochromator. In the first set, the transmission Guinier geometry was used, whereas a Debye-Scherrer-like and a flat

film geometry were used in the second and third experimental set-ups, respectively. In all cases, the crude powder was filled in Lindemann capillaries of 1 mm diameter and 10 mm wall-thickness. An initial set of diffraction patterns was recorded on an image plate; periodicities up to 80 Å can be measured, and the sample temperature controlled to within ±0.3 °C from 20 to 350 °C. The second set of diffraction patterns was recorded with a curved Inel CPS 120 counter gas-filled detector linked to a data acquisition computer; periodicities up to 60 Å can be measured, and the sample temperature controlled to within ±0.05 °C from 20 to 200°C. Finally, the last set of diffraction patterns was recorded on image plate, and periodicities up to 350 Å can be measured, and the sample temperature controlled to within ±0.01 °C from 20 to 200°C. In each case, exposure times were varied from 1 to 24 h. Elemental analyses were performed by Dr. H. Eder from the microchemical Laboratory of the University of Geneva.

References

¹. under N_2).

- # This journal is © The Royal Society of Chemistry 2006
 B. Dardel, D. Guillon, B. Heinrich and R. Deschenaux, J. Mater. Chem., 2001, 11, 2814.
- H. Nozary, C. Piguet, J.-P. Rivera, P. Tissot, G. Bernardinelli, N. Vulliermet, J. Weber and J.-C. Bünzli, *Inorg. Chem.*, 2000, **39**, 5286.
- S. Campidelli, J. Lenoble, J. Barberá, F. Paolucci, M. Marcaccio, D. Paolucci and R. Deschenaux, *Macromolecules*, 2005, 38, 7915.
- 4 J.-C. G. Bünzli, E. Moret et J.-R. Yersin, *Helv. Chim. Acta*, 1978, **61**, 762.
- 5 G. Schwarzenbach, *Complexometric titrations*, Chapman & Hall, London, 1957.
- 6 D. Wu, A. Chen and J. Johnson, J. Magn. Reson. A., 1995, 155, 260.

Table S1 Elemental Analyses for the Complexes $[Ln(Li)(NO_3)_3]$, (i = 3, 4, Ln = Lu, Tb, Gd and

Compd	%C found	%H found	%N found	%C calc	%H calc	%N calc
[Lu(L3)(NO ₃) ₃]·2.1 H ₂ O	59.40	4.85	6.97	59.39	4.85	6.97
[Eu(L3)(NO ₃) ₃]	61.15	4.98	7.08	61.27	4.73	7.22
[Lu(L4)(NO ₃) ₃] 3.6 H ₂ O	65.78	5.61	4.29	65.78	5.71	4.40
[Tb(L4)(NO ₃) ₃] 3.6 H ₂ O	66.08	5.71	4.18	66.07	5.73	4.42
[Gd(L4)(NO ₃) ₃] 3.6 H ₂ O	66.09	5.76	4.41	66.09	5.73	4.42
[Eu(L4)(NO ₃) ₃] 2.7 H ₂ O	66.15	5.71	4.28	66.15	5.71	4.28

Eu).

Table S2 1 H NMR shifts for the aromatic protons in the ligands L1, L3 and L4, and in their
complexes [Ln(Li)(NO_3)_3] (CD_2Cl_2, 293 K).

Compd	H1	H2	H6	H7	Н9
L1	8.05	8.32	7.48	7.18	7.64
$[Lu(L1)(NO_3)_3]$	8.51	8.23	7.56	7.41	8.12
L3	8.11	8.38	7.54	7.26	7.74
$[Lu(L3)(NO_3)_3]$	8.53	8.24	7.68	7.46	7.77
L4	8.11	8.40	7.54	7.28	7.74
$[Lu(L4)(NO_3)_3]$	8.53	8.23	7.68	7.45	7.76

Table S3Indexation at a given temperature $(T/^{\circ}C)$ for the Reflections Detected in the Liquid-

Crystalline Phases by SA-XRD for the Complexes $[Ln(L4)(NO_3)_3]$ (Ln = Lu, Tb, Eu

and Gd).

	T ∕°C	$d_{00l(\text{mes})}/\text{\AA}$	I/au	001	$A / \text{\AA}^{2 a}$
	100	128.0	S	001	46.5
	Heating	64.0	S	002	
		8.9	Br		
		4.5	Br		
	120	126.2	S	001	47 8
	Heating	63.1	ŝ	002	
$[Lu(L4)(NO_3)_3]$	0	8.9	Br		
		4.5	Br		
	140-160 Heating	Cryst.			
	190	110.4	S	001	57.3
	Heating	55.2	S	002	
	C C	4.5	Br		

	<i>T</i> /°C	$d_{00l(\text{mes})}/\text{\AA}$	I/au	001	$A / \text{\AA}^{2 a}$
	100	120.0	C	001	A.C. 5
	100	128.0	5	001	46.5
	Heating	64.0	S	002	
		4.5	Br		
	120	125.4	S	001	48.1
	Heating	62.7	S	002	
	U	4.5	Br		
[Tb(L4)(NO ₃) ₃]	140	121.0	S	001	50.5
	Heating	60.5	S	002	
	8	4.5	Br		
	160	111.8	S	001	55.5
	Heating	55.9	S	002	
	8	4.5	Br		
	180	107.0	S	001	58.7
	Heating	53 5	Ŝ	002	
		4.5	Br		

	<i>T</i> /°C	$d_{00l(\text{mes})}/\text{\AA}$	I/au	00 <i>l</i>	$A / \text{\AA}^{2 a}$
	100	120.0	G	001	45.0
	100	130.0	S	001	45.8
	Heating	65.0	8	002	
		4.5	Br		
	120	126.2	S	001	47.8
	Heating	63.1	S	002	
$[Gd(I_{A})(NO_{a})_{a}]$	U	4.5	Br		
	140	110 /	S	001	51.2
	140 Hosting	50.7	S S	001	51.2
	Heating	39.7 4 5	S Dr	002	
		4.3	DI		
	160	112.6	S	001	55.1
	Heating	56.3	S	002	
		4.5	Br		
	T ∕°C	$d_{00l(\text{mes})}/\text{\AA}$	I/au	00/	$A / \text{\AA}^{2 a}$
	100	123.6	S	001	48.1
	Heating	61.8	S	002	
		4.5	Br		
	120	125.4	S	001	48.1
	Heating	62.7	ŝ	002	
[Eu(L4)(NO ₃) ₃]	11000108	4.5	Br	002	
	140	121.0	c	001	50.5
	Heating	60.5	2	001	50.5
	Treating	00.3	Dr	002	
		4.5	DI		
	160	117.0	S	001	53.0
	Heating	58.5	S	002	
		4.5	Br		
	180	105.2	S	001	59.7
	Heating	52.6	S	002	
	0	4.5	Br		

^{*a*} Molecular area $A = V/d_{001}$ with $V = MM_{complex} \cdot \lambda \cdot 10^{-24}/d \cdot N_{av}$, $(MM_{complex}, molecular weight of the complex, N_{av}, Avogadro's number, and <math>\lambda = V_{CH2}(T)/V_{CH2}(T^{\theta})$, where $V_{CH2}(T) = 0.02023T + 26.5616$ (*T* in °C), and $T^{\theta} = 25^{\circ}$ C, *T* temperature of the experiment).¹³

Figure S1 Two examples of lanthanidomesogens obtained for complexes, in which the trivalent lanthanide is embedded within aromatic polarizable cavities.

Figure S2 : ¹H NMR spectra of a) L4, b) $[Lu(L4)(NO_3)_3]$ and c) $[Eu(L4)(NO_3)_3]$.

Figure S3 Van't Hoff plot $-R \cdot \ln(K_d^{Eu,L4})$ versus T^1 , from which the thermodynamic parameters $\Delta H_d^{Eu,L4} = -55(4) \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta S_d^{Eu,L4} = -166(11) \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ can be determined

Figure S4 DSC trace recorded for the complex [Eu(L4)(NO₃)₃] during a single heating process.

Figure S5 SA-XRD profile in liquid crystalline phase, and associated indexation for $[Eu(L4)(NO_3)_3]$ at 160°C.