Rhodium-Catalyzed Isomerization of Unactivated Alkynes to 1,3-Dienes

Ryo Shintani, Wei-Liang Duan, Soyoung Park, and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan

Supporting Information

I. General

All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon.
$\mathrm{Et}_{2} \mathrm{O}$ and THF were purified by passing through a neutral alumina column under nitrogen. DMF and 1,2-dichloroethane were distilled over CaH_{2} under vacuum.

Dimethyl allylmalonate (Aldrich), methyl 2-oxocyclopentanecarboxylate (Aldrich), dimethyl methylmalonate (Aldrich), benzyl bromide (Nacalai Tesque), 1-bromo-2-pentyne (Wako Chemicals), iodoethane (TCI), 1-phenyl-1-hexyne (TCI), LiAlH_{4} (Wako Chemicals), NaH (Kanto Chemicals; $60 \mathrm{wt} \%$ in mineral oil), and n BuLi (Kanto Chemicals; 1.59 M solution in hexane) were used as received.

Dimethyl methyl(2-pentynyl)malonate (1a), ${ }^{1}$ methyl 5,5-bis(methoxycarbonyl)-2-decen-7-ynoate ($\mathbf{1} \mathbf{j}),{ }^{1}$ tert-butyl 4-ethynylpiperidine-1-carboxylate, ${ }^{2}$ 1-benzylidene-3-oxopyrazolidin-1-ium-2-ide (3), ${ }^{3}$ 2-hexyn-1-yl p-toluenesulfonate, ${ }^{4}[\mathrm{RhCl}(\operatorname{cod})]_{2},{ }^{5}$ $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4},{ }^{6}$ and (\pm)-binap ${ }^{7}$ were synthesized following the literature procedures.

All other chemicals and solvents were purchased from Aldrich, Wako Chemicals, TCI, or Kanto Chemicals and used as received.

[^0]
II. Synthesis of Substrates

The yields have not been optimized.

6,6-bis(benzyloxymethyl)-3-pentyne (1b)

A solution of dimethyl methyl(2-pentynyl)malonate (1a; $1.06 \mathrm{~g}, 4.99 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added to a suspension of $\mathrm{LiAlH}_{4}(378 \mathrm{mg}, 9.96 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(12$ mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 9 h at room temperature and the reaction was quenched with water. The precipitate was removed by filtration, and the remaining solution was dried over MgSO_{4}, filtered, and concentrated under vacuum to afford diol as a colorless oil ($775 \mathrm{mg}, 4.96 \mathrm{mmol} ; 99 \%$ yield).

A solution of this diol in THF (10 mL) was added to a suspension of NaH (602 mg , $15.1 \mathrm{mmol} ; 60 \mathrm{wt} \%$ in mineral oil) in THF $(15 \mathrm{~mL}) / \mathrm{DMF}(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and benzyl bromide ($1.31 \mathrm{~mL}, 11.0$ mmol) was then added to it. After stirring for 12 h at room temperature, the reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with NaCl (saturated, aqueous), dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $=1 / 30$ to afford $\mathbf{1 b}$ as a colorless oil ($983 \mathrm{mg}, 2.92 \mathrm{mmol} ; 59 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 4 \mathrm{H}), 3.40\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{HH}}\right.$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.36\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.25\left(\mathrm{t},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.14\left(\mathrm{qt}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5\right.$ Hz and $\left.{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.10\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 139.2,128.4,127.52,127.50,83.7,76.5,74.5,73.5,39.6,25.2,19.7,14.6,12.7$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$337.2162, found 337.2166.

Dimethyl allyl(2-pentynyl)malonate (1c) (CAS 191801-56-6)

Dimethyl allylmalonate ($804 \mu \mathrm{~L}, 5.00 \mathrm{mmol}$) was added dropwise to a suspension
of NaH (240 mg , $6.00 \mathrm{mmol} ; 60 \mathrm{wt} \%$ in mineral oil) in THF (15 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$ and 1-bromo-2-pentyne ($639 \mu \mathrm{~L}, 6.25$ mmol) was then added to it. After stirring for 11 h at room temperature, the reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with NaCl (saturated, aqueous), dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $E t_{2} \mathrm{O} /$ hexane $=1 / 6$ to afford 1 c as a pale yellow oil ($1.17 \mathrm{~g}, 4.89 \mathrm{mmol} ; 98 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.62\left(\mathrm{ddt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=17.1,9.7\right.$, and $\left.7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=17.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.78\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.74(\mathrm{~s}$, $2 \mathrm{H}), 2.12\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.08\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 170.7$, $132.2,119.7,85.3,73.7,57.5,52.8,36.8,23.2,14.4,12.5$.

Methyl 2-oxo-1-(2-pentynyl)cyclopentanecarboxylate (1d) (CAS 68480-23-9)

Methyl 2-oxocyclopentanecarboxylate ($621 \mu \mathrm{~L}, 5.00 \mathrm{mmol}$) was added dropwise to a suspension of $\mathrm{NaH}(240 \mathrm{mg}, 6.00 \mathrm{mmol} ; 60 \mathrm{wt} \%$ in mineral oil) in THF (15 mL) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 12 min at $0^{\circ} \mathrm{C}$ and 1-bromo-2-pentyne $(639 \mu \mathrm{~L}, 6.25 \mathrm{mmol})$ was then added to it. After stirring for 2 h at room temperature, the reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with NaCl (saturated, aqueous), dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $=1 / 4$ to afford $\mathbf{1 d}$ as a yellow oil ($654 \mathrm{mg}, 3.14 \mathrm{mmol} ; 63 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.68\left(\mathrm{t},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.50-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.34-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 2.12\left(\mathrm{qt}^{3}{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$ and $\left.{ }^{5} J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.08-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 214.3,171.3,84.5,74.7,59.4,52.9,38.7,32.7$, $23.9,20.0,14.3,12.5$.

tert-Butyl 4-(1-butynyl)piperidine-1-carboxylate (1e)

n-BuLi ($1.89 \mathrm{~mL}, 3.01 \mathrm{mmol} ; 1.59 \mathrm{M}$ solution in hexane) was added to a solution of tert-butyl 4-ethynylpiperidine-1-carboxylate ($628 \mathrm{mg}, 3.00 \mathrm{mmol}$) in THF (10 mL) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 25 min at -78 to $-55{ }^{\circ} \mathrm{C}$ and iodoethane ($360 \mu \mathrm{~L}, 4.50 \mathrm{mmol}$) was then added to it. After stirring for 19 h at $50^{\circ} \mathrm{C}$, the reaction was diluted with NaCl (aqueous) and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O}$ /hexane $=1 / 4$ to afford $\mathbf{1 e}$ as a colorless oil ($712 \mathrm{mg}, 3.00 \mathrm{mmol} ; 100 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.67\left(\mathrm{ddd}^{2} J_{\mathrm{HH}}=13.3 \mathrm{~Hz}\right.$ and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7$ and $\left.3.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.15$ $\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=8.5$ and $\left.3.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.16\left(\mathrm{qd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ 7.4 Hz and $\left.{ }^{5} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.73\left(\mathrm{ddt},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=6.8$ and 3.7 Hz , $2 \mathrm{H}), 1.51\left(\mathrm{dtd},{ }^{2} J_{\mathrm{HH}}=13.1 \mathrm{~Hz}\right.$ and ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.3$ and $\left.3.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.11\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 155.0,83.3,81.7,79.5,42.5,32.0,28.7,27.2,14.6$, 12.6. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$260.1621, found 260.1609 .

Dimethyl methyl(2-hexynyl)malonate (1g)

Dimethyl methylmalonate ($320 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) was added dropwise to a suspension of NaH ($106 \mathrm{mg}, 2.65 \mathrm{mmol} ; 60 \mathrm{wt} \%$ in mineral oil) in THF (5 mL) at 0 ${ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 25 min at $0^{\circ} \mathrm{C}$ and 2-hexyn-1-yl p toluenesulfonate ($908 \mathrm{mg}, 3.60 \mathrm{mmol}$) was then added to it. After stirring for 12 h at room temperature, the reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with NaCl (saturated, aqueous), dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=2 / 1$ to afford $\mathbf{1 g}$ as a colorless oil (333 mg , 1.47 mmol; 61\% yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.75\left(\mathrm{t},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.09\left(\mathrm{tt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right.$
and $\left.{ }^{5} J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.47$ (sextet, $\left.{ }^{3} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.94\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3\right.$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.8,83.6,74.9,53.8,52.9,26.5,22.5,20.8,20.1,13.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$249.1097, found 249.1108.

Dimethyl methyl(6-methyl-2-heptynyl)malonate (1h)

1h
This was synthesized following the procedure for compound $\mathbf{1 g}$. Colorless oil, 74% yield.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.73(\mathrm{~s}, 6 \mathrm{H}), 2.75\left(\mathrm{t},{ }^{5} \mathrm{~J}_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.12\left(\mathrm{tt},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right.$ and $\left.{ }^{5} J_{\mathrm{HH}}=2.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.70-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.34\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 0.87$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 171.6,83.5,74.4,53.6,52.7,37.8,27.1,26.3$, 22.1, 19.9, 16.6. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$277.1410, found 277.1411.

Dimethyl methyl(5-phenyl-2-pentynyl)malonate (1i)

$1 i$
This was synthesized following the procedure for compound $\mathbf{1 g}$. Colorless oil, 100\% yield.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 6 \mathrm{H}), 2.77\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.75\left(\mathrm{t},{ }^{5} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43\left(\mathrm{tt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.5 \mathrm{~Hz}\right.$ and $\left.{ }^{5} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.8,140.9,128.6,128.5,126.4,82.9,75.6,53.7,52.9$, 35.5, 26.5, 21.0, 20.1. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}\left(\mathrm{M}+\mathrm{H}^{+}\right)$289.1434, found 289.1429.

III. Catalytic Reactions

General Procedure for Equation 2 and Table 1.

A solution of $[\mathrm{RhCl}(\operatorname{cod})]_{2}(2.5 \mathrm{mg}, 10 \mu \mathrm{~mol} \mathrm{Rh})$ and (\pm)-binap $(6.8 \mathrm{mg}, 11 \mu \mathrm{~mol})$
in 1,2-dichloroethane (0.3 mL) was stirred for 5 min at room temperature. Dipole 3 $(34.8 \mathrm{mg}, 0.20 \mathrm{mmol})$ and alkyne $\mathbf{1}(0.20 \mathrm{mmol})$ were added to it with additional 1,2dichloroethane (0.3 mL), and the mixture was stirred for $24-72 \mathrm{~h}$ at $80-100{ }^{\circ} \mathrm{C}$. After cooled to room temperature, the reaction mixture was directly passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC with $\mathrm{Et}_{2} \mathrm{O}$ /hexane to afford compound 2.

2a
Equation 1. (CAS 148876-15-7 for E; 148876-25-9 for Z) The reaction was conducted for 24 h at $80^{\circ} \mathrm{C}$. Colorless oil. 89% yield, $E / Z=77 / 23$.

E-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.27\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=17.0\right.$ and $\left.10.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=15.0$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.54\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.1\right.$ and $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=16.7 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=10.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 6 \mathrm{H}), 2.63\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.39(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 172.2,136.5,135.1,128.1,116.4,53.8,52.5,38.9,19.9$.

Z-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.61\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.8\right.$ and $\left.10.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.32\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=10.1\right.$ and $\left.8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.22\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=16.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14(\mathrm{~d}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70(\mathrm{~s}, 6 \mathrm{H}), 2.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.2,132.9,131.6,125.2,118.5,53.7,52.5,33.6,19.8$.

2b
Table 1, Entry 1. The reaction was conducted for 48 h at $80^{\circ} \mathrm{C}$ in the presence of 7 $\mathrm{mol} \%$ catalyst. Colorless oil. 76% yield, $E / Z=73 / 27$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37-7.27(\mathrm{~m}, 10 \mathrm{H}), 6.69\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.8\right.$ and $\left.10.6 \mathrm{~Hz}, 0.27 \mathrm{H}\right)$, $6.28\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=17.0\right.$ and $\left.10.2 \mathrm{~Hz}, 0.73 \mathrm{H}\right), 6.10\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=11.0 \mathrm{~Hz}, 0.27 \mathrm{H}\right), 6.04\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=15.1$ and $10.3 \mathrm{~Hz}, 0.73 \mathrm{H}), 5.65\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.0\right.$ and $\left.7.8 \mathrm{~Hz}, 0.73 \mathrm{H}\right), 5.47\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ 10.1 and $8.9 \mathrm{~Hz}, 0.27 \mathrm{H}), 5.18\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=17.0 \mathrm{~Hz}\right.$ and $\left.{ }^{2} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 0.27 \mathrm{H}\right), 5.08(\mathrm{dd}$, $\left.{ }^{3} J_{\mathrm{HH}}=16.9 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 0.73 \mathrm{H}\right), 5.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=10.0 \mathrm{~Hz}, 0.27 \mathrm{H}\right), 4.96\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=\right.$ $\left.10.2 \mathrm{~Hz},{ }^{2} J_{\mathrm{HH}}=1.3 \mathrm{~Hz}, 0.73 \mathrm{H}\right), 4.49(\mathrm{~s}, 2.92 \mathrm{H}), 4.48(\mathrm{~s}, 1.08 \mathrm{H}), 3.31\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right.$,
$0.54 \mathrm{H}), 3.30\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}, 1.46 \mathrm{H}\right), 3.29\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 0.54 \mathrm{H}\right), 3.28\left(\mathrm{~d},{ }^{2} J_{\mathrm{HH}}=8.8\right.$ $\mathrm{Hz}, 1.46 \mathrm{H}), 2.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 0.54 \mathrm{H}\right), 2.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1.46 \mathrm{H}\right), 0.94(\mathrm{~s}$, $0.81 \mathrm{H}), 0.92(\mathrm{~s}, 2.19 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.9,137.2,133.7,132.5,131.6,131.0$, $128.4,128.21,128.20,127.7,127.31,127.30,127.29,127.26,116.7,114.9,74.7,74.6,73.2$, 73.1, 39.9, 39.7, 38.0, 32.5, 19.6, 19.5. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 337.2162, found 337.2162.

Table 1, Entry 2. (CAS 355114-57-7 for E) The reaction was conducted for 24 h at 80 ${ }^{\circ} \mathrm{C}$. Colorless oil. 84% yield, $E / Z=69 / 31$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.59\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.7\right.$ and $\left.10.8 \mathrm{~Hz}, 0.31 \mathrm{H}\right), 6.27\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=16.9\right.$ and $10.3 \mathrm{~Hz}, 0.69 \mathrm{H}), 6.13-6.05(\mathrm{~m}, 1 \mathrm{H}), 5.68-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.50\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.0\right.$ and 7.6 $\mathrm{Hz}, 0.69 \mathrm{H}), 5.28\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.6\right.$ and $\left.8.1 \mathrm{~Hz}, 0.31 \mathrm{H}\right), 5.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.8 \mathrm{~Hz}, 0.31 \mathrm{H}\right)$, $5.15-5.09(\mathrm{~m}, 3 \mathrm{H}), 5.01\left(\mathrm{~d},{ }^{3} \mathrm{JH}_{\mathrm{HH}}=10.0 \mathrm{~Hz}, 0.69 \mathrm{H}\right), 3.71(\mathrm{~s}, 4.14 \mathrm{H}), 3.70(\mathrm{~s}, 1.86 \mathrm{H}), 2.78$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 0.62 \mathrm{H}\right), 2.67-2.62(\mathrm{~m}, 3.38 \mathrm{H})$.

E-isomer: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.4,136.8,135.3,132.4,127.9,119.5,116.7,58.0$, 52.6, 37.3, 36.0.

Z-isomer: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 171.4,133.1,132.4,131.9,125.1,119.6,118.8,58.0$, 52.6, 37.2, 30.8.

Table 1, Entry 3. The reaction was conducted for 24 h at $80^{\circ} \mathrm{C}$. Colorless oil. 76% yield, $E / Z=83 / 17$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.62\left(\mathrm{dt}^{3} \mathrm{~J}_{\mathrm{HH}}=16.8\right.$ and $\left.10.6 \mathrm{~Hz}, 0.17 \mathrm{H}\right), 6.27\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=17.0\right.$ and $10.4 \mathrm{~Hz}, 0.83 \mathrm{H}), 6.14-6.09(\mathrm{~m}, 0.17 \mathrm{H}), 6.09\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.2\right.$ and $\left.10.5 \mathrm{~Hz}, 0.83 \mathrm{H}\right)$, $5.54\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.1\right.$ and $\left.7.4 \mathrm{~Hz}, 0.83 \mathrm{H}\right), 5.32\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.4\right.$ and $\left.7.9 \mathrm{~Hz}, 0.17 \mathrm{H}\right), 5.23$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.8 \mathrm{~Hz}, 0.17 \mathrm{H}\right), 5.17-5.15(\mathrm{~m}, 0.17 \mathrm{H}), 5.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.9 \mathrm{~Hz}, 0.83 \mathrm{H}\right), 5.02(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=10.1 \mathrm{~Hz}, 0.83 \mathrm{H}\right), 3.70(\mathrm{~s}, 2.49 \mathrm{H}), 3.69(\mathrm{~s}, 0.51 \mathrm{H}), 2.83\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=14.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=\right.$
8.0 Hz , and $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 0.17 \mathrm{H}\right), 2.69\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=14.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right.$, and ${ }^{4} J_{\mathrm{HH}}=$ $1.1 \mathrm{~Hz}, 0.83 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.26(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.87(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (E-isomer, $\left.\mathrm{CDCl}_{3}\right): \delta 214.4,171.3,136.5,135.1,128.5,116.5,60.2,52.5,38.0,36.6,32.1,19.5$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$231.0992, found 231.0990.

Table 1, Entry 4. The reaction was conducted for 24 h at $80^{\circ} \mathrm{C}$. Colorless oil. 81% yield (contaminated with $\sim 5 \%$ impurity), $E / Z=85 / 15$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.63\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=17.0\right.$ and $\left.10.5 \mathrm{~Hz}, 0.15 \mathrm{H}\right), 6.29\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=17.0\right.$ and $10.2 \mathrm{~Hz}, 0.85 \mathrm{H}), 6.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.4\right.$ and $\left.10.4 \mathrm{~Hz}, 0.85 \mathrm{H}\right), 5.95\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=11.0 \mathrm{~Hz}\right.$, $0.15 \mathrm{H}), 5.63\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.5\right.$ and $\left.6.7 \mathrm{~Hz}, 0.85 \mathrm{H}\right), 5.26\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.0 \mathrm{~Hz}, 0.15 \mathrm{H}\right), 5.21(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=16.0 \mathrm{~Hz}, 0.15 \mathrm{H}\right), 5.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.7 \mathrm{~Hz}, 0.85 \mathrm{H}\right), 5.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=10.5 \mathrm{~Hz}, 0.15 \mathrm{H}\right)$, $5.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.1 \mathrm{~Hz}, 0.85 \mathrm{H}\right), 4.08(\mathrm{bs}, 2 \mathrm{H}), 2.73(\mathrm{bs}, 2 \mathrm{H}), 2.64-2.53(\mathrm{~m}, 0.15 \mathrm{H}), 2.20-$ $2.11(\mathrm{~m}, 0.85 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (E-isomer, CDCl_{3}): $\delta 154.8,138.6,137.1,132.0,115.6,79.3,42.7,38.8,31.6,28.4$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$260.1621, found 260.1612.

Table 1, Entry 5. (CAS 39491-62-8 for (1E,3E); 39491-61-7 for ($1 E, 3 Z$)) The reaction was conducted for 36 h at $100^{\circ} \mathrm{C}$. Colorless oil. 73% yield, $(1 E, 3 E) /(1 E, 3 Z)=71 / 29$. E-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.29\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}), 7.19\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.7\right.$ and $\left.10.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.21\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.1\right.$ and $\left.10.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.67\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.1\right.$ and 6.7 Hz , $1 \mathrm{H}), 2.17$ (quint, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.05\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right)$.

Z-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.41\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.7\right.$ and $\left.11.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.52\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=15.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.13\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.53\left(\mathrm{dt}^{3} \mathrm{~J}_{\mathrm{HH}}=10.6\right.$ and $\left.7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.17$ (quint of $\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}$ $=7.6 \mathrm{~Hz}$ and $\left.{ }^{4} \mathrm{~J}_{\mathrm{HH}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.05\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 137.7,137.4,134.8,131.2,129.9,129.53,129.45,128.54,128.51$, $128.1,127.3,127.0,126.3,126.1,124.3,25.9,21.3,14.3,13.5$.

Table 1, Entry 6. (CAS 198876-11-3 for (2E,4E)) The reaction was conducted for 61 h at $100^{\circ} \mathrm{C}$. Colorless oil. 84% yield, $(2 E, 4 E) /(2 E, 4 Z) /(2 Z, 4 E) /(2 Z, 4 Z)=49 / 35 / 8 / 8$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.43-6.22(\mathrm{~m}, 0.24 \mathrm{H}), 6.37\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=14.9\right.$ and $\left.11.1 \mathrm{~Hz}, 0.35 \mathrm{H}\right)$, 6.09-5.92 (m, 1.41H), $5.71\left(\mathrm{dq},{ }^{3} J_{\mathrm{HH}}=15.2\right.$ and $\left.7.1 \mathrm{~Hz}, 0.08 \mathrm{H}\right), 5.61\left(\mathrm{dq},{ }^{3} J_{\mathrm{HH}}=14.1\right.$ and $6.8 \mathrm{~Hz}, 0.49 \mathrm{H}), 5.60-5.54(\mathrm{~m}, 0.08 \mathrm{H}), 5.49\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.0\right.$ and $\left.7.6 \mathrm{~Hz}, 0.35 \mathrm{H}\right), 5.42(\mathrm{dq}$, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.9$ and $\left.7.2 \mathrm{~Hz}, 0.35 \mathrm{H}\right), 5.37\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=13.9\right.$ and $\left.7.7 \mathrm{~Hz}, 0.49 \mathrm{H}\right), 5.31\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=\right.$ 10.4 and $8.3 \mathrm{~Hz}, 0.08 \mathrm{H}), 5.14\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.4\right.$ and $\left.8.3 \mathrm{~Hz}, 0.08 \mathrm{H}\right), 3.72-3.70(\mathrm{~m}, 6 \mathrm{H})$, $2.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 0.16 \mathrm{H}\right), 2.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 0.16 \mathrm{H}\right), 2.66\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$, $0.70 \mathrm{H}), 2.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 0.98 \mathrm{H}\right), 1.77-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 0.48 \mathrm{H}), 1.39(\mathrm{~s}, 1.05 \mathrm{H})$, $1.37(\mathrm{~s}, 1.47 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (2E isomers, $\left.\mathrm{CDCl}_{3}\right): \delta 172.58,172.55,134.9,131.3,129.8$, 129.1, 128.9, 127.2, 125.9, 124.7, 54.12, 54.09, 52.68, 52.66, 39.5, 39.2, 20.14, 20.08, 18.2, 13.5.

2h
Table 1, Entry 7. The reaction was conducted for 72 h at $100^{\circ} \mathrm{C}$. Colorless oil. 87% yield, $(2 E, 4 E) /(2 E, 4 Z) /(2 Z, 4 E)=84 / 9 / 7$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.35\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.4\right.$ and $\left.11.6 \mathrm{~Hz}, 0.09 \mathrm{H}\right), 6.23\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.3\right.$ and $11.1 \mathrm{~Hz}, 0.07 \mathrm{H}), 6.09-6.04(\mathrm{~m}, 0.09 \mathrm{H}), 6.03\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.0\right.$ and $\left.10.4 \mathrm{~Hz}, 0.84 \mathrm{H}\right)$, $5.93\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.3\right.$ and $\left.10.4 \mathrm{~Hz}, 0.84 \mathrm{H}\right), 5.80\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.9 \mathrm{~Hz}, 0.07 \mathrm{H}\right), 5.67\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=14.9$ and $6.3 \mathrm{~Hz}, 0.07 \mathrm{H}), 5.58\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.1\right.$ and $\left.6.6 \mathrm{~Hz}, 0.84 \mathrm{H}\right), 5.49\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.3\right.$ and $6.9 \mathrm{~Hz}, 0.09 \mathrm{H}), 5.40\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=14.9\right.$ and $\left.7.5 \mathrm{~Hz}, 0.84 \mathrm{H}\right), 5.18\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.0 \mathrm{~Hz}\right.$, $0.09 \mathrm{H}), 5.16\left(\mathrm{dt},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.8\right.$ and $\left.7.9 \mathrm{~Hz}, 0.07 \mathrm{H}\right), 3.71(\mathrm{~s}, 5.58 \mathrm{H}), 3.70(\mathrm{~s}, 0.42 \mathrm{H}), 2.75(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 0.18 \mathrm{H}\right), 2.65\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 0.14 \mathrm{H}\right), 2.61\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1.68 \mathrm{H}\right)$, 2.36-2.25 (m 1H), $1.41(\mathrm{~s}, 0.27 \mathrm{H}), 1.39(\mathrm{~s}, 0.21 \mathrm{H}), 1.38(\mathrm{~s}, 2.52 \mathrm{H}), 1.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}\right.$,
$0.42 \mathrm{H}), 0.98\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 5.04 \mathrm{H}\right), 0.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.7 \mathrm{~Hz}, 0.54 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR ((2E,4E)-isomer, $\left.\mathrm{CDCl}_{3}\right): \delta 172.4,141.2,134.9,126.8,124.9,53.9,52.5,39.0,30.9,22.2$, 19.9. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$277.1410, found 277.1400 .

Table 1, Entry 8. (CAS 148876-13-5 for ($2 E, 4 E$); 148876-21-5 for ($2 Z, 4 E$)) The reaction was conducted for 48 h at $100^{\circ} \mathrm{C}$. Colorless oil. 83% yield, $(2 E, 4 E) /(2 Z, 4 E)=81 / 19$.
$(2 E, 4 E)$-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.30\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.6\right.$ and $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=15.0\right.$ and $\left.10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.67\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.0\right.$ and 7.5 Hz , $1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 2.70\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.3$, $137.2,134.7,131.7,128.6,128.3,127.7,126.4,126.3,53.9,52.5,39.3,20.0$.
$(2 Z, 4 E)$-isomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.42\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=16.6\right.$ and $\left.11.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.56\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.30\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=10.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.40\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=9.5\right.$ and $\left.8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}$, $6 \mathrm{H}), 2.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 172.3,137.2,133.7$, 132.5, 128.6, 127.7, 125.3, 123.6, 53.9, 52.6, 33.9, 19.9.

Procedure for Equation 3.

A solution of $[\mathrm{RhCl}(\operatorname{cod})]_{2}(2.5 \mathrm{mg}, 10 \mu \mathrm{~mol} \mathrm{Rh})$ and (\pm)-binap ($6.8 \mathrm{mg}, 11 \mu \mathrm{~mol}$) in 1,2-dichloroethane (0.3 mL) was stirred for 10 min at room temperature. Dipole 3 ($10.5 \mathrm{mg}, 60 \mu \mathrm{~mol}$) and alkyne 1 a ($42.5 \mathrm{mg}, 0.20 \mathrm{mmol}$) were added to it with additional 1,2-dichloroethane (0.3 mL), and the mixture was stirred for 43 h at $80^{\circ} \mathrm{C}$. After cooled to room temperature, the reaction mixture was directly passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $=1 / 5$ to afford compound 2a as a colorless oil ($37.0 \mathrm{mg}, 0.174 \mathrm{mmol} ; 87 \%$ yield, $E / Z=76 / 24$).

Procedure for Equation 4.

A solution of $\mathrm{RhH}\left(\mathrm{PPh}_{3}\right)_{4}(18.5 \mathrm{mg}, 16.0 \mu \mathrm{~mol} \mathrm{Rh})$ and alkyne 1a $(42.5 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in 1,2-dichloroethane (0.6 mL) was stirred for 76 h at $100^{\circ} \mathrm{C}$ using a teflon-
sealed Schlenk tube. After cooled to room temperature, the reaction mixture was directly passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was chromatographed on silica gel with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $=1 / 5$ to afford compound $\mathbf{2 a}$ as a pale yellow oil $(34.3 \mathrm{mg}, 0.161 \mathrm{mmol}$; 81% yield, $E / Z=78 / 22$).

Procedure for Equation 5.

A solution of $[\mathrm{RhCl}(\operatorname{cod})]_{2}(2.5 \mathrm{mg}, 10 \mu \mathrm{~mol} \mathrm{Rh})$ and (\pm)-binap ($6.8 \mathrm{mg}, 11 \mu \mathrm{~mol}$) in 1,2-dichloroethane (0.3 mL) was stirred for 10 min at room temperature. Dipole 3 ($34.8 \mathrm{mg}, 0.20 \mathrm{mmol}$) and alkyne $\mathbf{1 j}$ ($59.3 \mathrm{mg}, 0.20 \mathrm{mmol}$) were added to it with additional 1,2-dichloroethane (0.3 mL), and the mixture was stirred for 63 h at 100 ${ }^{\circ} \mathrm{C}$. After cooled to room temperature, the reaction mixture was directly passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $=1 / 2$ to afford compound 4 with diene $\mathbf{2 j} \mathbf{(4 / 2 j}=96 / 4)$ as a colorless oil $(46.0 \mathrm{mg}, 0.155$ mmol; 75% yield of 4 , mixture of two diastereomers in 69/31).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.77\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=9.9 \mathrm{~Hz}, 0.69 \mathrm{H}\right), 5.72-5.65(\mathrm{~m}, 0.62 \mathrm{H}), 5.63$ (ddd, ${ }^{3} \mathrm{~J}_{\mathrm{HH}}=9.9,6.3$, and $\left.3.1 \mathrm{~Hz}, 0.69 \mathrm{H}\right), 3.73(\mathrm{~s}, 0.93 \mathrm{H}), 3.72(\mathrm{~s}, 2.07 \mathrm{H}), 3.714(\mathrm{~s}, 2.07 \mathrm{H})$, $3.707(\mathrm{~s}, 0.93 \mathrm{H}), 3.70(\mathrm{~s}, 2.07 \mathrm{H}), 3.69(\mathrm{~s}, 0.93 \mathrm{H}), 2.64-2.35(\mathrm{~m}, 5 \mathrm{H}), 2.28-2.10(\mathrm{~m}, 1.38 \mathrm{H})$, $2.08\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=14.2 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=5.3 \mathrm{~Hz}, 0.31 \mathrm{H}\right), 1.94\left(\mathrm{dd},{ }^{2} J_{\mathrm{HH}}=13.2 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=$ $10.6 \mathrm{~Hz}, 0.31 \mathrm{H}), 1.87\left(\mathrm{t}, J_{\mathrm{HH}}=12.3 \mathrm{~Hz}, 0.69 \mathrm{H}\right), 1.79-1.72(\mathrm{~m}, 0.62 \mathrm{H}), 1.73\left(\mathrm{t}, J_{\mathrm{HH}}=12.7\right.$ $\mathrm{Hz}, 0.69 \mathrm{H}$). HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right)$297.1333, found 297.1329.

Major diastereomer: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 175.2,173.2,172.9,127.9,126.7,58.2$, $52.97,52.96,51.8,44.9,44.7,43.6,38.5,37.9,29.7$.

Minor diastereomer: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 175.9,173.0,172.7,128.7,125.2,59.4$, 53.0, 52.9, 51.9, 43.6, 42.1, 40.2, 38.5, 38.4, 27.1.

[^0]: ${ }^{1}$ Shintani, R.; Tsurusaki, A.; Okamoto, K.; Hayashi, T. Angew. Chem. Int. Ed. 2005, 44, 3909.
 ${ }^{2}$ Raimundo, B. C.; Oslob, J. D.; Braisted, A. C.; Hyde, J.; McDowell, R. S.; Randal, M.; Waal, N. D.; Wilkinson, J.; Yu, C. H.; Arkin, M. R. J. Med. Chem. 2004, 47, 3111.
 ${ }^{3}$ Shintani, R.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 10778.
 ${ }^{4}$ Yoshida, Y.; Sakakura, Y.; Aso, N.; Okada, S.; Tanabe, Y. Tetrahedron 1999, 55, 2183.
 ${ }^{5}$ Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218.
 ${ }^{6}$ Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F. Inorg. Synth. 1974, 15, 58.
 ${ }^{7}$ Cai, D.; Payack, J. F.; Bender, D. R.; Hughes, D. L.; Verhoeven, T. R.; Reider, P. J. J. Org. Chem. 1994, 59, 7180.

