2,2'-Disubstituted F₁₂Binaphthyl Derivatives: Stannanes, Boranes, and (*R*)-F₁₂BINOL

Darryl J. Morrison, Susanne D. Riegel, Warren E. Piers, Masood Parvez, and Robert McDonald

Department of Chemistry, University of Calgary, 2500 University Drive N.W. Calgary,

Alberta, Canada T2N 1N4, and X-Ray Structure Laboratory, University of Alberta,

Edmonton, Alberta, Canada T6G 2G2

wpiers@ucalgary.ca

<u>S.1</u>	General Considerations:	S3
<u>S1.1</u>	Solvents and Reagents	S3
<u>S1.2</u>	2 <u>NMR Spectroscopy</u>	S3
<u>S1.3</u>	<u>Other Instrumentation and Analysis</u>	S3
<u>S2</u>	Experimental Details	S4
<u>S2.1</u>	Synthesis of 1,3,4,5,6,7,8-Heptafluoro-2-naphthylhydrazine:	S4
<u>82.2</u>	<u>Synthesis of 1,2,3,4,5,6-Hexafluoronaphthalene (2-H):</u>	S5
<u>S2.3</u>	<u>Synthesis of 1-Bromo-3,4,5,6,7,8-hexafluoronaphthalene (2-Br):</u>	S6
<u>S2.4</u>	<u>Synthesis of 3,3_,4,4_,5,5_,6,6_,7,7_,8,8Dodecafluoro-1,1binaphthyl (3</u>	<u>B):</u>
	S7	
<u>S2.5</u>	<u>Synthesis of 2,2Bis(tri-<i>n</i>-butylstannyl)-3,3_,4,4_,5,5_,6,6_,7,7_,8,8</u>	
dode	ecafluoro-1,1binaphthyl (4-Bu):	S8

<u>82.6</u>	Synthesis of 2,2 <i>Bis</i> (bromodi- <i>n</i> -butylstannyl)-3,3_,4,4_,5,5_,6,6_,7,7_,8,8
dodeca	<u>ufluoro-1,1binaphthyl (4-Br):</u>
<u>S2-7</u>	Synthesis of 2-Bromoboryl-3,3_,4,4_,5,5_,6,6_,7,7_,8,8dodecafluoro-1,1
<u>binaph</u>	<u>thyl dimer (5):</u>
<u>S2-8</u>	Synthesis of 2,2Dihydroxy-3,3_,4,4_,5,5_,6,6_,7,7_,8,8dodecafluoro-1,1
<u>binaph</u>	<u>thyl, F₁₂BINOL (1):</u>
<u>S2.9</u>	Synthesis of 2,2 <i>Bis</i> ((S)-2-acetoxypropionato)-3,3_,4,4_,5,5_,6,6_,7,7_,8,8
dodeca	fluoro-1,1binaphthyl (6):
<u>S2.10</u>	Spectral data for (R)-(-)-2,2Bis((S)-2-acetoxypropionato)-
<u>3,3_,4</u> ,	<u>4_,5,5_,6,6_,7,7_,8,8dodecafluoro-1,1binaphthyl ((R_{ax},S,S)-6):</u>
<u>S2.11</u>	Spectral data for (S)-(+)-2,2Bis((S)-2-acetoxypropionato)-
<u>3,3_,4</u> ,	4_,5,5_,6,6_,7,7_,8,8dodecafluoro-1,1binaphthyl ((<i>S</i> ax, <i>S</i> , <i>S</i>)-6):
<u>S2.13</u>	Saponification of (R_{ax}, S, S) -6: Synthesis of (R) -F ₁₂ BINOL $((R)$ -1):S16
<u>S2.14</u>	Synthesis of 2,2Dimethoxy-3,3_,4,4_,5,5_,6,6_,7,7_,8,8dodecafluoro-1,1
<u>binaph</u>	<u>thyl (7):</u>

<u>S3</u>	References	S1	17	1

S.1 General Considerations:

S1.1 Solvents and Reagents

Tetrahydrofuran (THF) was dried over sodium/benzophenone ketal and freshly distilled before use. CH₂Cl₂ was dried over CaH₂ and freshly distilled before use. Dimethylsulfoxide (DMSO) was fractionally distilled under vacuum and stored over activated 4 Å molecular sieves. Benzaldehyde and titanium isopropoxide were freshly distilled before use. Octafluoronaphthalene (Oakwood Products, Inc.) and all other solvents and reagents (Aldrich) were purchased and used as received.

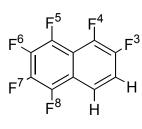
S1.2 NMR Spectroscopy

Nuclear magnetic resonance spectroscopy (1-dimensional ¹H, ¹¹B, ¹³C, ¹⁹F, and ¹¹⁹Sn; 1-dimensional ¹H-¹⁹F decoupling; and 2-dimensional ¹⁹F-¹⁹F and ¹H-¹H COSY) were performed on Bruker AMX-300 (¹H, 300.1 MHz; ¹¹B, 96.3 MHz; ¹³C, 75.5 MHz; ¹⁹F, 282.4 MHz) or Bruker DRX-400 (¹H, 400.1 MHz; ¹¹B, 128.4 MHz; ¹³C, 100.6 MHz; ¹¹⁹Sn, 149.0 MHz) spectrometers. All ¹H NMR spectra were referenced relative to SiMe₄ (δ 0.00 ppm) through the residual ¹H resonance(s) of the solvents employed (δ : CDCl₃, 7.27 ppm; C₆D₆, 7.16 ppm; CD₂Cl₂, 5.32 ppm; toluene-*d*₈, 2.09 ppm (C(H/D)₃); THF-*d*₈, 1.73 and 3.58 ppm). ¹¹B NMR spectra were referenced relative to BF₃·OEt₂ (δ 0.0 ppm) in C₆D₆. ¹³C NMR spectra were referenced relative to SiMe₄ (δ 0.0 ppm) through the residual conduct the resonance(s) of the solvents employed (δ : CDCl₃, 77.23 ppm; CD₂Cl₂, 54.0 ppm). ¹⁹F NMR spectra were referenced relative to external C₆F₆ (δ - 162.0 ppm) in C₆D₆ at room temperature.

S1.3 Other Instrumentation and Analysis

Analytical chiral HPLC separations were performed using a Daicel Chiralcel OD column with a Waters 1525 Binary HPLC Pump using isocratic hexane:*i*-PrOH mixtures at room temperature with UV detection at 254 nm on a Waters 2487 detector. Elemental analyses were performed on a Control Equipment Corporations 440 Elemental Analyzer by Mrs. Dorothy Fox, Mrs. Roxanna Smith, and Ms. Olivera Blagojevic. Single crystal

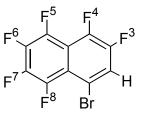
X-ray crystallographic analyses were performed by Dr. Masood Parvez (University of Calgary) on a Nonius KappaCCD diffractometer or by Dr. Robert McDonald (University of Alberta) on a Bruker P4/RA/SMART 1000 CCD diffractometer.


S2 Experimental Details

S2.1 Synthesis of 1,3,4,5,6,7,8-Heptafluoro-2-naphthylhydrazine:

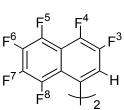
1, 3,4,5, 6,7,8-Heptafluoronaphthylhydrazine was prepared via the method described by Gething et al.¹ Hydrazine monohydrate, $^{\text{CNHNH}_2}$ NH₂NH₂·H₂O, (3.95 mL, 4.08 g, 81.6 mmol, 1.1 equiv.) was added via syringe to a stirred EtOH solution (100% absolute, 105 mL, 0.7 M) of octafluoronaphthalene (20.0 g, 73.5 mmol, 1 equiv.) at room temperature. The orange solution was heated at reflux (~80 °C) for 4 h, then poured into water (~200 mL) and extracted with CH_2Cl_2 (3 × ~150 mL). The combined CH_2Cl_2 extracts were dried over MgSO₄, filtered, and concentrated in vacuo to give an orange solid. In a modification of the literature procedure, the orange solid was suspended in petroleum spirits (~400 mL), stirred rapidly for 1 h, and filtered to give the fluoronaphthyl hydrazine as a pale orange solid (12.8 g, 61 %; Lit.¹ 57%). The product was found to be >95% pure by 19 F NMR with the only contaminant being unreacted octafluoronaphthalene (<5%). ¹H NMR (CDCl₃): δ 5.51 (br s, 1H, NHNH₂), 4.10 (br s, 2H, NHNH₂). ¹⁹F NMR (CDCl₃): δ -142.6 (dm, ${}^{4}J_{\text{peri}} = 63.0 \text{ Hz}$), -146.7 (app. dtm, ${}^{4}J_{\text{peri}} = 56.5 \text{ and } J = 16.3 \text{ Hz}$), -147.4 (app. dtm, ${}^{4}J_{\text{peri}} = 63.8$ and J = 16.3 Hz), -148.5 (app. dtm, ${}^{4}J_{\text{peri}} = 56.8$ and J = 16.0 Hz), -149.3 (m), -155.7 (m), -158.1 (app. tm, J = 18.8 Hz). The orange petroleum spirit filtrate was

concentrated to give a dark orange solid which was purified by silica gel column chromatography (100% hexanes) to give octafluoronaphthalene (6.3 g, 32% recovery) as a colourless crystalline solid. Resonances for octafluoronaphthalene $C_{10}F_8$: ¹⁹F NMR (CDCl₃): δ -145.0 (m, 4F), -153.5 (m, 4F).


S2.2 Synthesis of 1,2,3,4,5,6-Hexafluoronaphthalene (2-H):

Hexafluoronaphthalene **2-H** was prepared from 1,3,4,5,6,7,8heptafluoro-2-naphthyl hydrazine via a modification of the method described by Bolton and Sandall.² Solid 1,3,4,5,6,7,8-heptafluoro-2-naphthyl hydrazine (10.9 g, 38.4 mmol, 1 equiv.) was added to a

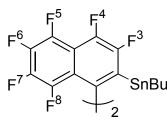
MeOH solution of NaOMe (0.5 M, freshly prepared by dissolving Na {3.53 g, 153 mmol} in 300 mL MeOH, 4 equiv.) and the resulting dark solution was stirred at room temperature until the evolution of N₂ ceased (~0.5 h). The reaction mixture was poured into water (~250 mL) to give a yellow mixture that was extracted with CH₂Cl₂ (3 × ~200 mL). The combined CH₂Cl₂ extracts were dried over MgSO₄, filtered, and concentrated to give an orange oil that was purified by silica gel column chromatography (100% hexanes) to give **2-H** as a pale yellow oil (8.28 g, 91%). ¹H and ¹⁹F NMR spectroscopic properties matched those reported in the literature.^{2,3} ¹H NMR (CDCl₃): δ 7.83 (dm, *J* = 9.4 Hz, 1H), 7.47 (app. td, *J* = 9.4 and 7.0 Hz, 1H). ¹⁹F NMR (CDCl₃): δ -137.1 (m, F³), -144.6 (dm, ⁴*J*_{peri(F4-F5)} = 51.0 Hz, F⁴), -146.5 (app. dtd, ⁴*J*_{peri(F5-F4)} = 51.0 Hz, and *J* = 16.6 and 5.1 Hz, F⁵), -147.8 (m, F⁸), -155.3 (m, F⁶), -157.5 (app. tdd, *J* = 18.5 Hz for ³*J*_{ortho(F7-F6)} and ³*J*_{ortho(F7-F8)}, and *J* = 7.7 and 4.2 Hz, F⁷).


S2.3 Synthesis of 1-Bromo-3,4,5,6,7,8-hexafluoronaphthalene (2-Br):

Hexafluoronaphthalene 2-H (8.28 g, 35.1 mmol, 1 equiv.) was
³ added dropwise to a stirred mixture of Br₂ (9.0 mL, 28.0 g, 175
⁴ mmol, 5 equiv.) and Fe powder (3.92 g, 70.2 mmol, 2 equiv.). The mixture was stirred at room temperature for 15 min then diluted

with CH₂Cl₂ (20 mL) and carefully added in portions to a stirred and cooled (ice bath) saturated aqueous solution of Na₂S₂O₃ (~250 mL). The yellow mixture was then extracted with CH_2Cl_2 (3 × ~250 mL) and the combined extracts were dried over MgSO₄, filtered, and concentrated to give an orange oil contaminated with solid yellow sulfur. Silica gel column chromatography gave 2-Br as a pale yellow oil (10.5 g, 95%) that was approx. 85% pure by GC/MS. The pale yellow oil crystallized upon standing and was recrystallized from hexane at -30 °C to give 2-Br as a colourless crystalline solid (7.74 g, 70%). ¹H and ¹⁹F NMR spectroscopic characteristics matched those reported by Matthews,³ although a more thorough analysis is given here. ¹H NMR (CDCl₃): δ 7.76 $(dd, {}^{3}J_{ortho(H-F3)} = 9.5 \text{ and } {}^{4}J_{meta(H-F4)} = 6.7 \text{ Hz}).$ ${}^{19}\text{F} \text{ NMR} (\text{CDCl}_{3}): \delta -136.2 \text{ (m, } \text{F}^{3}), -136.2 \text{$ 139.9 (app. tm, J = 17.1 Hz for ${}^{3}J_{\text{ortho}(F8-F7)}$ and ${}^{5}J_{\text{para}(F8-F5)}$, F^{8}), -144.2 (ddm, ${}^{4}J_{\text{peri}(F4-F5)} =$ 68.3 and ${}^{3}J_{\text{ortho}(F4-F3)} = 17.6 \text{ Hz}, \text{ F}^{4}$, -145.0 (app. dtm, ${}^{4}J_{\text{peri}(F5-F4)} = 68.8 \text{ and } J = 17.1 \text{ Hz}$ for ${}^{3}J_{\text{ortho}(F5-F6)}$ and ${}^{5}J_{\text{para}(F5-F8)}$, F⁵), -153.3 (app. tm, J = 18.7 Hz for ${}^{3}J_{\text{ortho}(F6-F5)}$ and ${}^{3}J_{\text{ortho}(\text{F6-F7})}$, F⁶), -154.5 (app. tm, J = 18.7 Hz for ${}^{3}J_{\text{ortho}(\text{F7-F6})}$ and ${}^{3}J_{\text{ortho}(\text{F7-F8})}$, F⁷). Anal. calcd. for C₁₀HBrF₆: C, 38.13; H, 0.32. Found: C, 37.89; H, 0.30.

S2.4 Synthesis of 3,3_,4,4_,5,5_,6,6_,7,7_,8,8_-Dodecafluoro-1,1_-binaphthyl (3):

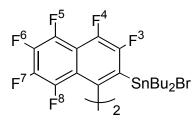


To a THF solution (0.4 M, 15 mL) of **2-Br** (2.00 g, 6.35 mmol, 1 equiv.) was added *i*-PrMgCl (2.0 M THF, 3.33 mL, 6.66 mmol, 1.05 equiv.) at room temperature. The resulting nearly colourless solution was cooled to -78 °C then transferred via canula onto a THF

suspension (10 mL) of CuBr·SMe₂ (1.31 g, 6.35 mmol, 1 equiv.) at -78 °C. To the colourless mixture at -78 °C was then added a THF solution (5 mL) of **2-Br** (2.00 g. 6.35 mmol, 1 equiv.) via syringe. The flask was sealed with a Teflon valve and the cold bath was removed and copious red precipitate began to appear as the mixture warmed to room temperature. The rust red mixture was heated to 90 °C for 48 hours then cooled to room temperature and filtered through a pad of Celite while washing with EtOAc. The yellow filtrate was diluted with aqueous HCl (1 M, \sim 150 mL) and extracted with EtOAc (3 × 150 mL). The combined yellow EtOAc extracts were dried over MgSO₄, filtered, and concentrated to give a yellow solid (3.2 g). Silica gel column chromatography (100% hexanes) gave the coupled product 3 as a nearly colourless crystalline solid (2.58 g)86%). Single crystals suitable for X-ray crystallographic study were grown by cooling an Et₂O solution to -30 °C. ¹H NMR (CDCl₃): δ 7.29 (dd, ³J_{ortho(H-F3)} = 9.9 and ⁴J_{meta(H-F4)} = 7.1 Hz, 2H, aryl C-H). ¹⁹F NMR (CDCl₃): δ -137.6 (m, F³), -140.7 (app. tm, J = 16.6 Hz for ${}^{3}J_{\text{ortho}(F8-F7)}$ and ${}^{5}J_{\text{para}(F8-F5)}$, F^{8}), -143.4 (ddm, ${}^{4}J_{\text{peri}(F4-F5)} = 63.1$ and ${}^{3}J_{\text{ortho}(F4-F3)} = 17.6$ Hz, F⁴), -145.2 (app. dtm, ${}^{4}J_{\text{peri}(F5-F4)} = 63.1$ and J = 16.6 Hz for ${}^{3}J_{\text{ortho}(F5-F6)}$ and ${}^{5}J_{\text{para}(F5-F8)}$, F^{5}), -154.0 (app. tm, J = 18.1 Hz for ${}^{3}J_{ortho(F6-F5)}$ and ${}^{3}J_{ortho(F6-F7)}$, F^{6}), -155.5 (app. tm, J =18.6 Hz for ${}^{3}J_{\text{ortho}(F7-F6)}$ and ${}^{3}J_{\text{ortho}(F7-F8)}$, F⁷). 13 C NMR (CDCl₃): δ 146.5 (dd, ${}^{1}J_{\text{C-F}} = 252.3$

and $J_{C-F} = 11.5$ Hz, aryl *C*-F), 143.8 (dm, ${}^{1}J_{C-F} = 256.1$ Hz, aryl *C*-F), 142.9 (dm, ${}^{1}J_{C-F} = 250.7$ Hz, aryl *C*-F), 141.6 (dm, ${}^{1}J_{C-F} = 256.9$ Hz, aryl *C*-F), 139.4 (app. dt, ${}^{1}J_{C-F} = 256.1$ and $J_{C-F} = 15.0$ Hz, aryl *C*-F), 138.9 (app. dt, ${}^{1}J_{C-F} = 256.1$ and $J_{C-F} = 17.3$ Hz, aryl *C*-F), 130.5 (m, quaternary aryl *C*), 121.0 (d, ${}^{2}J_{C-F} = 21.8$ Hz, aryl *C*-H), 116.6 (m, quaternary aryl *C*), 112.2 (m, quaternary aryl *C*). Anal. calcd. for $C_{20}H_2F_{12}$: C, 51.09; H, 0.43. Found: C, 50.80; H, 0.26.

S2.5 Synthesis of 2,2_-*Bis*(tri-*n*-butylstannyl)-3,3_,4,4_,5,5_,6,6_,7,7_,8,8_dodecafluoro-1,1 -binaphthyl (4-Bu):

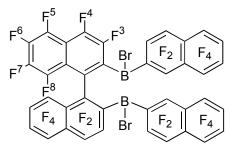


A THF solution (0.5 M, 60 mL) of LTMP was generated by
³ the addition of *n*-BuLi (1.6 M hexane, 19.00 mL, 30.4 mmol,
SnBu₃ 6 equiv.) to a THF solution (40 mL) of 2,2,6,6-tetramethylpiperidine (5.16 mL, 4.29 g, 30.4 mmol, 6 equiv.)

at room temperature and stirring for 30 min. The LTMP solution was cooled to -78 °C and to it was added ClSnBu₃ (8.24 mL, 9.89 g, 6 equiv.) via syringe at a rate slow enough to prevent warming of the LTMP/ClSnBu₃ solution above -70 °C. To this base/electrophile solution was added a THF solution (5 mL) of **3** (2.38g, 5.06 mmol, 1 equiv.) slowly via syringe to immediately give a dark blackish solution which was kept at -78 °C for 24 hours. The mixture was then warmed to room temperature, diluted with water (~60 mL), and extracted with CH₂Cl₂ (3 × 60 mL). The combined CH₂Cl₂ extracts were dried over MgSO₄, filtered, and concentrated to give a dark red/black oil. Silica gel column chromatography (100% hexanes) gave **4-Bu** as an analytically-pure colourless oil

(4.28 g, 81%). ¹H NMR (CDCl₃): δ 1.36 – 1.12 (m, 4H, SnCH₂CH₂CH₂CH₃), 0.82 (t, ³J_{H-H} = 7.2 Hz, Sn(CH₂)₃CH₃), 0.70 – 0.61 (m, 6H, SnCH(H_)(CH₂)₂CH₃), 0.48 – 0.38 (m, 6H, SnCH(H_)(CH₂)₂CH₃). ¹⁹F NMR (CDCl₃): δ -116.6 (m, F³), -137.2 (m, F⁸), -145.9 – -146.0 (m, F⁴ and F⁵), -155.3 (m, F⁶), -156.8 (app. tm, J = 18.8 Hz for ³J_{ortho(F7-F6)} and ³J_{ortho(F7-F8)}, F⁷). ¹³C NMR (CDCl₃; 3 overlapping aryl *C*-F resonances between 140 and 137 ppm are not tabulated and aryl *C*-SnBu₃ were not located): δ 150.9 (dm, ¹J_{C-F} = 236.9 Hz, aryl *C*-F), 141.5 (dm, ¹J_{C-F} = 244.9 Hz, aryl *C*-F), 118.1 (m, quat. aryl *C*), 112.8 (app. tm, J = 9.8 Hz, quat. aryl *C*), 28.9 (s; Sn satellites: d, ³J_{Sn-C} = 18.6 Hz, *n*-butyl C_{γ}), 27.4 (s; ¹¹⁹Sn satellites: d, ²J_{119Sn-C} = 71.9 Hz; ¹¹⁷Sn satellites: d, ²J_{117Sn-C} = 68.3 Hz, *n*-butyl C_{β}), 13.6 (s, *n*-butyl C_{δ}), 11.2 (d, ⁴J_{C-F} = 2.7 Hz; ¹¹⁹Sn satellites: dd, ¹J_{119Sn-C} = 353.1 and ⁴J_{C-F} = 2.7 Hz; ¹¹⁷Sn satellites: dd, ¹J_{117Sn-C} = 338.9 and ⁴J_{C-F} = 3.5 Hz, *n*-butyl C_{α}). ¹¹⁹Sn NMR (CDCl₃): δ -35.0 (dm, ³J_{Sn-F} = 41.0 Hz). Anal. calcd. for C₄₄H₅₄F₁₂Sn₂: C, 50.41; H, 5.19. Found: C, 50.19; H, 5.63.

S2.6 Synthesis of 2,2_-*Bis*(bromodi-*n*-butylstannyl)-3,3_,4,4_,5,5_,6,6_,7,7_,8,8_dodecafluoro-1,1 -binaphthyl (4-Br):

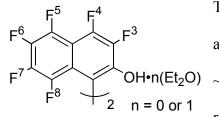


BBr₃ (~1 mL, >10 equiv.) was vacuum transferred at -78 °C into a 25 mL glass bomb containing **4-Bu** (319 mg, 0.30 mmol, 1 equiv.). The bomb was sealed with a Teflon valve and the pink solution was stirred at room temperature for 2

h. The volatiles were then removed in vacuo to give a tan coloured powder (403 mg).

The expected yield for 0.3 mmol of 4-Br (MW = 1094, 0.3 mmol, 328 mg) and the byproduct, *n*-BuBBr₂ (MW = 228, 0.6 mmol, 137 mg) was 465 mg total. The ¹⁹F NMR spectrum of the tan powder shows one C_2 -symmetric fluorine-containing product consistent with the structure of 4-Br. The yield of 4-Br was therefore assumed to be nearly quantitative. Small amounts (<50 mg) of colourless needle crystals of 4-Br were obtained by cooling pentane solutions to -30 °C, although the similar solubilities of 4-Br and the by-product *n*-BuBBr₂ led to contamination of samples of **4-Br** with *n*-BuBBr₂. ¹H NMR (CDCl₃): δ 1.48 – 1.2 (m, 5H), 1.01 (m, 1H), 0.85 (t, ³J_{H-H} = 7.3 Hz, CH₃). ¹⁹F NMR (CDCl₃): δ -118.9 (d, ${}^{3}J_{ortho(F3-F4)} = 21.7$ Hz, F³), -136.8 (app. t, J = 16.8 Hz for ${}^{3}J_{\text{ortho}(F8-F7)}$ and ${}^{5}J_{\text{para}(F8-F5)}$, F⁸), -142.7 (ddm, ${}^{4}J_{\text{peri}(F4-F5)} = 62.6$ and ${}^{3}J_{\text{ortho}(F4-F3)} = 22.8$ Hz, F^4), -144.9 (app. dtm, ${}^4J_{\text{peri}(F5-F4)} = 62.6$ and J = 17.1 Hz for ${}^3J_{\text{ortho}(F5-F6)}$ and ${}^5J_{\text{para}(F5-F8)}$, F^{5}), -152.7 (app. tm, J = 18.1 Hz for ${}^{3}J_{ortho(F6-F5)}$ and ${}^{3}J_{ortho(F6-F7)}$, F^{6}), -154.6 (app. tm, J =18.1 Hz for ${}^{3}J_{\text{ortho}(F7-F6)}$ and ${}^{3}J_{\text{ortho}(F7-F8)}$, F^{7}). ${}^{13}C$ NMR (CDCl₃; only SnBu resonances are tabulated; ¹¹⁷Sn and ¹¹⁹Sn satellites were not observed due to the low concentration of the sample): δ 28.1, 26.6, 21.0 (d, ${}^{4}J_{C-F}$ = 4.2 Hz), 13.5. ¹¹⁹Sn NMR (CDCl₃): δ 25.8 (dd, ${}^{3}J_{\text{Sn-F}} = 74.5$ and ${}^{4}J_{\text{Sn-F}} = 14.5$ Hz). Elemental analysis of the colourless powder suggests the formulation as the 2,2 -bis(SnBu₂Br) derivative. Anal. calcd. for C₃₆H₃₆Br₂F₁₂Sn₂: C, 39.53; H, 3.32. Found: C, 39.86; H, 2.65. The other possibility, the 2,2 bis(SnBuBr₂) derivative, would have the theoretical composition for C₂₈H₁₈Br₄F₁₂Sn₂ of C, 29.51% and H, 1.59%.

S2-7 Synthesis of 2-Bromoboryl-3,3_,4,4_,5,5_,6,6_,7,7_,8,8_-dodecafluoro-1,1_-


binaphthyl dimer (5):

BBr₃ (8.4 g, 34 mmol, 8.7 equiv.) was vacuum transferred at -78 °C into a 25 mL glass bomb containing **2-Bu** (4.08 g, 3.9 mmol, 1 equiv.). The bomb was sealed with a Teflon valve and the pink

solution darkened to intense dark blue as it was heated up to 90 °C. After stirring at 90 °C for 24 h, the black-green mixture was then cooled to room temperature and the volatiles removed in vacuo to give a mixture dark coloured oil and yellow crystalline solid. The yellow crystals were washed by vacuum transferring portions of pentane (~ 20 mL) into the flask, stirring for 5 - 10 min at room temperature and then decanting the dark blue pentane solution via canula into a second flask. This process was repeated twice more (or until the pentane wash is nearly colourless) and then the volatiles were removed in vacuo to give 5 as a canary yellow microcrystalline solid (1.62 g, 74%). The blue pentane solution was concentrated *in vacuo* and then treated with a second portion of BBr₃ (~5g) at 90 °C overnight followed by removal of volatiles and pentane washing as described above to give more yellow solid (0.26 g, 12%) for a total yield of 5 of 1.87 g (86%). The pentane washes were again concentrated to give a dark red oil (5.44g) consisting of BuBBr₂ and Bu₂SnBr₂ (theoretical yield: 1.76 and 3.06 g, respectively; total 4.82 g) and residual *bis*(bromodi-*n*-butylstannyl) derivative **4-Br** (theoretical for 14% unreacted material: 0.60 g). Single yellow block crystals of $5 \cdot (toluene)_2$ suitable for X-ray crystallographic analysis were obtained by cooling a saturated toluene solution to -

30 °C. ¹⁹F NMR (282.4 MHz, CDCl₃): δ -131.0 (dm, ³*J*_{ortho(F3-F4)} = 16.0 Hz, F³), -138.3 (app. tm, *J* = 16.6 Hz for ³*J*_{ortho(F8-F7)} and ⁵*J*_{para(F8-F5)}, F⁸), -140.0 (ddm, ⁴*J*_{peri(F4-F5)} = 61.6 and ³*J*_{ortho(F4-F3)} = 18.1 Hz, F⁴), -143.3 (app. dtm, ⁴*J*_{peri(F5-F4)} = 62.1 and *J* = 16.6 Hz for ³*J*_{ortho(F5-F6)} and ⁵*J*_{para(F5-F8)}, F⁵), -148.2 (app. tm, *J* = 18.6 Hz for ³*J*_{ortho(F6-F5)} and ³*J*_{ortho(F6-F5)}, F⁶), -151.7 (m, F⁷). ¹⁹F NMR (282.4 MHz, C₆D₆): δ -131.4 (F³), -139.1 (F⁸), -139.8 (F⁴), -143.2 (F⁵), -147.7 (F⁶), -152.2 (F⁷). ¹¹B NMR 49.2 ppm. The low solubility of **5** and low intensities for *C*-F resonances prevented the acquisition of good quality ¹³C NMR spectral data. Anal. calcd. for C₄₀B₂Br₂F₂₄: C, 42.98. Found: C, 43.00.

S2-8 Synthesis of 2,2_-Dihydroxy-3,3_,4,4_,5,5_,6,6_,7,7_,8,8_-dodecafluoro-1,1_binaphthyl, F₁₂BINOL (1):

F³ To a THF solution (5 mL) of **5** (1.57 g, 1.40 mmol) was added H_2O_2 (30% aqueous solution, 1.6 mL, 10 equiv., OH•n(Et₂O) ~2.5 equiv. per B-C bond in **5**) dropwise by syringe at n = 0 or 1 room temperature. The pale yellow solution immediately

changed to yellow/orange with some precipitate formation and exothermicity during the addition of the first ~0.7 mL of 30% H₂O₂ solution. Upon further addition the reaction mixture turned clear yellow/orange without any further heat evolved. After stirring for 30 min at room temperature, the solution was poured into brine (~100 mL) and extracted with Et₂O (3 × 150 mL). The combined Et₂O extracts were dried over MgSO₄, filtered, and concentrated to give an orange solid (2.18 g). Silica gel column chromatography (0 – 40% EtOAc in hexanes) gave a red oil (1.66 g) that was pure by TLC ($R_f = 0.56$, 40%

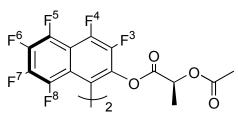

EtOAc:hexanes). The red oil was dissolved in Et₂O (~100 mL) and washed with aqueous NaOH solution (1 M, 3×50 mL). The nearly colourless basic aqueous extracts were combined and acidified by the addition of aqueous HCl solution (6 M) and the resulting milky acidic layer was extracted with Et_2O (3 × 150 mL). The combined Et_2O extracts were then dried over MgSO₄, filtered, and concentrated to give a pale green oil (1.50 g) that began to crystallize on standing. Recrystallization from Et₂O gave colourless block crystals of $1 \cdot (Et_2O)_2$ (1.40 g, 90 %). Single crystals of $1 \cdot (Et_2O)_2$ suitable for X-ray diffraction were grown by cooling an Et₂O solution to -30 °C. $1 \cdot (Et_2O)_2$: ¹H NMR (CDCl₃): δ 6.45 (br d, ⁴*J*_{H-F3} = 2.0 Hz, 2H, O*H*), 3.50 (q, ³*J*_{H-H} = 6.9 Hz, 8H, OC*H*₂CH₃), 1.19 (t, ${}^{3}J_{H-H} = 6.9$ Hz, 12H, OCH₂CH₃). ${}^{19}F$ NMR (CDCl₃; fluorine resonances were not symmetrical for unknown reasons): δ -140.9 (m, F⁴), -146.0 (m, F⁸), -146.1 (dm, ${}^{4}J_{\text{neri}(F5-1)}$ $_{F4} = 61.5 \text{ Hz}, F^5$, -155.6 (m, F^7), -156.6 (m, F^3), -159.0 (m, F^6). ¹³C NMR (CDCl₃; 4 overlapping aryl C-F resonances between 142 and 136 ppm are not tabulated): δ 144.9 $(dm, {}^{1}J_{C-F} = 259.0 \text{ Hz}, \text{ aryl } C-F), 144.0 (d, {}^{2}J_{C-F} = 13.3 \text{ Hz}, \text{ aryl } C-OH), 141.8 (dm, {}^{1}J_{C-F})$ = 259.9 Hz, aryl C-F), 116.7 (m, quat. aryl C), 109.0 (m, quat. aryl C), 106.9 (app. tm, J = 9.8 Hz), 66.2 (s, OCH_2CH_3), 15.1 (s, OCH_2CH_3). Removal of the coordinated Et₂O molecules was accomplished by grinding the crystalline $1 \cdot (Et_2O)_2$ into a powder and heating under dynamic vacuum at 50 °C overnight. 1: ¹H NMR (CDCl₃): δ 5.51 (br d, ${}^{4}J_{\text{H-F3}} = 3.8 \text{ Hz}, 2\text{H}, OH$). ${}^{19}\text{F} \text{ NMR} (\text{CDCl}_3)$: $\delta - 140.4 \text{ (dm}, {}^{4}J_{\text{peri}(\text{F4-F5})} = 59.0 \text{ Hz}, \text{F}^4$), -145.6 to -146.0 (overlapping signals for F⁵ and F⁸), -155.1 (m, F⁷), -157.2 (m, F³), -158.4 (m, F^6). Anal. calcd. for C₂₀H₂F₁₂O₂: C, 47.83; H, 0.40. Found: C, 47.58; H, 0.14.

S2.9 Synthesis of 2,2 -Bis((S)-2-acetoxypropionato)-

3,3_,4,4_,5,5_,6,6_,7,7_,8,8_-dodecafluoro-1,1_-binaphthyl (6):

Modifications of the methods described by Hopkins and Keay,⁴ and Kazlouskas⁵ were employed for the synthesis of 6. To a solution of 1 (828 mg, 1.64 mmol) in Et_2O (0.05 M, 30 mL) was added NEt₃ (506 µL, 3.61 mmol, 2.2 equiv.) at room temperature. (S)-(-)-Acetoxypropionyl chloride (457 µL, 3.61 mmol, 2.2 equiv.) was then added dropwise via syringe and the mixture was stirred for 8 hours. The mixture was then diluted with hexanes, filtered, and the resulting filter cake washed with several portions of Et₂O. The volatiles were removed in vacuo and the residue was purified by silica gel column chromatography (gradient elution, 0 - 10% EtOAc:hexanes) to give 6 as an off-white semi-solid (1.14 g, 95%) that was found to be a 1:1 mixture of diastereomers, (R_{ax}, S, S) -6 and (S_{ax},S,S) -6. Fractional recrystallization from hexanes (~0.26 M, ~6 mL) at -10 °C gave 536 mg (47 %) of nearly colourless solid that was found to be 56 % de by 1 H NMR spectroscopy. Recrystallizations of this fraction from hexanes gave colourless block crystals (407 mg, 36 %; 71 % of theoretical for one diastereomer) that were found to be 97 % de by ¹H NMR. An X-ray diffraction study of single block crystals from this fraction did not assignment of the absolute configuration based on X-Ray data alone, due to the low scattering power of the light atoms in the structure. However, the known stereochemistry at C2 and C7 based on the starting material allowed assignment of this isomer as (R_{ax}, S, S) -6 (R in the F₁₂-BINOL fragment). The combined mother liquors from the recrystallizations were concentrated to give a yellow oil product of 70 % de for the (S_{ax},S,S) -6 diastereomer.

S2.10 Spectral data for (R)-(-)-2,2_-Bis((S)-2-acetoxypropionato)-

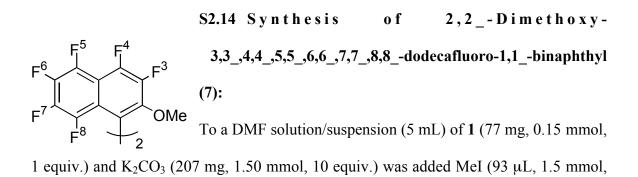


¹H NMR (CDCl₃): δ 4.76 (q, J = 7.2 Hz, 2H, propionoate CHCH₃), 2.00 (s, 6H, acetate CH₃), 1.35 (d, J = 7.2 Hz, 6H, propionoate CHCH₃). ¹⁹F NMR (CDCl₃): δ -139.1 (dd, ⁴J_{peri(F4-F5)} = 63.1 Hz

and ${}^{3}J_{\text{ortho}(F4-F3)} = 17.6 \text{ Hz}, F^{4}$, -141.1 (m, F⁸), -144.9 (dm, ${}^{4}J_{\text{peri}(F5-F4)} = 63.1 \text{ Hz}, F^{5}$), -148.1 (m, F³), -153.6 (m, F⁷), -154.0 (app. t, J = 19.1 Hz for ${}^{3}J_{\text{ortho}(F6-F5)}$ and ${}^{3}J_{\text{ortho}(F6-F7)}$, F⁶). 13 C NMR (CDCl₃; only acetoxypropionate *C* resonances are tabulated): δ 170.1 (ester *C*=O), 167.6 (ester *C*=O), 68.3 (propionoate *C*HCH₃), 20.2 (acetoxy *C*H₃), 16.7 (propionoate CH*C*H₃). [\dot{a}]²²_D -121 (c = 12, CH₂Cl₂) for a sample of 97% de by ¹H NMR).

S2.11 Spectral data for (S)-(+)-2,2_-Bis((S)-2-acetoxypropionato)-

3,3_,4,4_,5,5_,6,6_,7,7_,8,8_-dodecafluoro-1,1_-binaphthyl ((Sax,S,S)-6):



¹H NMR (CDCl₃): δ 4.79 (q, J = 7.2 Hz, 2H, propionoate CHCH₃), 1.86 (s, 6H, acetate CH₃), 1.38 (d, J = 7.2 Hz, 6H, propionoate CHCH₃). ¹⁹F NMR (CDCl₃): δ -138.8 (dd, ⁴J_{peri(F4-F5)} = 63.1 Hz

and ${}^{3}J_{\text{ortho}(F4-F3)} = 17.6 \text{ Hz}, F^{4}$), -141.1 (m, F⁸), -145.4 (dm, ${}^{4}J_{\text{peri}(F5-F4)} = 63.1 \text{ Hz}, F^{5}$), -148.0 (m, F³), -154.2 (m, F⁷), -154.7 (app. t, J = 18.6 Hz for ${}^{3}J_{\text{ortho}(F6-F5)}$ and ${}^{3}J_{\text{ortho}(F6-F7)}$, F⁶). 13 C NMR (CDCl₃; only acetoxypropionate *C* resonances are tabulated): δ 169.8 (ester *C*=O), 167.4 (ester *C*=O), 67.9 (propionoate *C*HCH₃), 20.1 (acetoxy *C*H₃), 16.6 (propionoate CH*C*H₃).

S2.13 Saponification of (R_{ax}, S, S) -6: Synthesis of (R)-F₁₂BINOL ((R)-1):

The saponification procedure described by Hopkins and Keay⁴ was adapted for the saponification of (R_{ax} , S, S)-6. To a THF solution (0.2 M, 1.6 mL) of (R_{ax} , S, S)-6 (230 mg, 0.31 mmol, 1 equiv.) was added an aqueous solution of LiOH (1.45 mL of a 1.07 M solution, 1.55 mmol, 5 equiv.) at room temperature. The yellow reaction mixture was stirred overnight at room temperature then diluted with 1N aqueous HCl (~15 mL), and extracted into Et₂O (3 × 15 mL). The combined ethereal extracts were then dried over MgSO₄, filtered, and concentrated in vacuo to give a yellow oil (225 mg) that was subjected to silica gel column chromatography (gradient elution, 0 – 40% EtOAc:hexanes) to give a pale yellow oil that solidified on standing. Heating the sample at 60 °C under dynamic vacuum to remove residual solvent gave (R)-1 as a pale yellow solid (155 mg, 99%). ¹H and ¹⁹F NMR spectroscopic properties matched those described above for racemic, solvent-free 1. [a]²²_D -46 (c = 3.9, CH₂Cl₂). A sample of (R)-7 prepared from a representative aliquot of (R)-1 was found to be 98.6 % ee by chiral stationary phase HPLC (*vide infra*).

10 equiv.) via syringe at room temperature. The yellow mixture was stirred at room temperature for 18 hours then diluted with aqueous HCl (0.05 M, 15 mL) and extracted with Et₂O (3 × 15 mL). The combined Et₂O extracts were dried over MgSO₄, filtered, and concentrated to give a yellow semi-solid that was recrystallized from Et₂O to give **7** as yellow crystals (68 mg, 86%). Samples of (*R*)-**7** prepared from (*R*)-**1** were not recrystallized so that the optical purities determined by HPLC would be representative of the samples of (*R*)-**1** used. Instead, crude samples of (*R*)-**7** were analyzed directly by HPLC. ¹H NMR (CDCl₃): δ 3.81 (d, ⁵*J*_{H-F3} = 2.3 Hz, 6H, O*Me*). ¹⁹F NMR (CDCl₃): δ - 140.4 (ddm, ⁴*J*_{peri(F4-F5)} = 62.6 and ³*J*_{ortho(F4-F3)} = 16.6 Hz, F⁴), -143.7 (app. tm, *J* = 16.0 Hz for ⁵*J*_{para(F8-F5)} and ³*J*_{ortho(F8-F7)}, F⁸), -145.8 (dm, ⁴*J*_{peri(F5-F4)} = 62.6 Hz, F⁵), -150.5 (m, F³), -155.5 (app. tm, *J* = 18.6 Hz for ³*J*_{ortho(F7-F6)} and ³*J*_{ortho(F6-F7)}, F⁶). Anal. calcd. for C₂₂H₆F₁₂O₂: C, 49.83; H, 1.14. Found: C, 49.82; H, 1.06. Chiral HPLC: *t*_R (*S*)-**7**, 8.3 min; *t*_R (*R*)-**7**, 9.4 min (Daicel Chiralcel OD, 100% hexane, 1 mL/min).

S3 References

¹ Gething, B.; Patrick, C. R.; Tatlow, J. C. J. Chem. Soc. 1962, 186-190.

² Bolton, R.; Sandall, J. P. B. J. Chem. Soc., Perkin Trans. 2 1978, 746-750.

³ Matthews, R. S. Org. Magn. Reson. 1982, 18, 226-230.

⁴ Hopkins, J. M.; Dalrymple, S. A.; Parvez, M.; Keay, B. A. *Org. Lett.* **2005**, *7*, 3765-3768.

⁵ Kazlauskas, R. J. J. Am. Chem. Soc. **1999**, 38, 497-501.