Galactose Oxidase models: ¹⁹F NMR as a powerful tool to study the solution chemistry of tripodal ligands in presence of copper(II).

By F. Michel, S. Hamman, F. Thomas, C. Philouze, I. Gautier-Luneau, E. Saint-Aman, and J.-L. Pierre.

General: All chemicals were of reagent grade and used without purification. Microanalyses were performed by the Service Central d'Analyses du CNRS (Lyon, France).

298 K UV-vis spectra were recorded on a Perkin Elmer Lambda 2 spectrophotometer (1.000 cm path length quartz cell).

NMR spectra were recorded on a Bruker AM 300 (¹H at 300 Mhz, ¹³C at 75 Mhz, ¹⁹F at 282 MHz). Chemical shifts are given relative to tetramethylsilane (TMS). C_6F_6 was used as internal reference for ¹⁹F NMR experiments ($\delta_{C6F6} = -162.17$ ppm *vs*. CFCl₃).

Mass spectra were recorded on a Thermofunnigen (EI/DCI) or a Nermag R 101 C (FAB+) apparatus.

X-band EPR spectra were recorded on a BRUKER ESP 300E spectrometer equipped with a BRUKER nitrogen flow cryostat. Spectra were treated using the WINEPR software and simulated using the BRUKER SIMFONIA software.

Synthetic procedure:

6-fluoro-quinolin-ylmethyl)-pyridin-2-ylmethyl-amine: 6-fluoro-quinoline-2-carbaldehyde (1.0 g, 5.71 mmol) is dissolved in methanol (10 mL). Picolylamine (617 mg, 5.75 mmol in 2 mL methanol) is added dropwise during 30 min. The reaction mixture was stirred for 4 hours at room temperature. Sodium borohydride (216 mg, 5.71 mmol) is then added by small amounts, at 273 K during 30 min. After 3 h stirring, the organic layer was evaporated and HCl (2 M) is added until neutralization. The reaction mixture was extracted with CH₂Cl₂ (2×50 mL), washed with saturated NaCl, dried over Na₂SO₄ and evaporated. 6-fluoro-quinolin-ylmethyl)-pyridin-2-ylmethyl-amine was purified by silica gel column chromatography with CH₂Cl₂ : MeOH (20 : 1) as eluent. 6-fluoro-quinolin-ylmethyl)-pyridin-2-ylmethyl-amine (686 mg, 75%) was obtained as a red oil; ¹H NMR (300.12 MHz, CDCl₃, 298 K, TMS): δ = 3.46 (s, 1 H), 4.06 (s, 2 H), 4.17 (s, 2 H), 7.15 (dd, ³J(H,H) = 7.7 Hz), 7.35-7.47 (m, 3 H), 7.50 (d, ³J(H,H) = 8.5 Hz), 7.63 (td, 1 H, ³J(H,H) = 7.7 Hz,⁴J(H,H) = 1.8 Hz), 8.03 (d, ³J(H,H) = 8.7 Hz, 1 H), 8.05 (d, ³J(H,H) = 9.1 Hz, 1 H), 8.56 (d, ³J(H,H) = 4.8 Hz, 1 H); ¹³C NMR (75.465 MHz, CDCl₃, 298 K, TMS): δ = 55.1 (CH₂), 55.3 (CH₂), 110.8 (d, CH, ²J(C,F) = 21.6 Hz), 119.8 (d, CH, ²J(C,F) = 25.4 Hz), 121.6 (CH), 122.4 (CH), 122.8 (CH), 128.2 (d, Cq, ³J(C,F) = 10.0 Hz), 131.8 (d, CH, ³J(C,F) = 9.1 Hz), 136.2 (d, CH, ⁴J(C,F) = 5.2 Hz), 136.8 (CH), 145.1 (Cq), 149.7 (CH), 159.5 (d, Cq, ⁴J(C,F) = 2.8 Hz), 159.6 (Cq), 160.5 (d, Cq, ¹J(C,F) = 247.3 Hz); ¹⁹F NMR (188.313 MHz, CDCl₃, 298 K, TMS): δ = 47.8 (td, 1F, ³J(F,H) = 8.5 Hz,⁴J(F,H) = 6.1 Hz); MS (DCI, NH₃ isobutane), m/z, 268 (M+H)⁺.

2-*tert*-**butyl-6**-{**[(6-fluoro-quinolin-2-ylmethyl)-pyridin-2-ylmethyl-amino]-methyl}-4-nitro-phenol:** 3-*tert*-butyl-2hydroxy-5-nitro-benzaldehyde (500 mg, 2.2 mmol, prepared according to F. Thomas et al., *Chem. Eur. J.*, **2003**, *9*, 3803), 6fluoro-quinolin-ylmethyl)-pyridin-2-ylmethyl-amine (598 mg, 2.2 mmol) and 0.1 mL glacial acetic acid are dissolved in 50 mL methanol. Sodium cyanoborohydride (280 mg, 4.4 mmol) is added by small amounts, during 8 hours. After 12 h stirring, the reaction mixture is neutralized by HCl (2 M), extracted with CH₂Cl₂ (2×50 mL), washed with saturated NaCl, dried over Na₂SO₄ and evaporated. 2-tert-butyl-6-{[(6-fluoro-quinolin-2-ylmethyl)-pyridin-2-ylmethyl-amino]-methyl}-4-nitro-phenol was purified by silica gel column chromatography one time with CH₂Cl₂ : MeOH (60 : 1) as eluent and an other time with diethyl ether followed by diethyl ether : methanol (10 : 1). 2-*tert*-butyl-6-{[(6-fluoro-quinolin-2-ylmethyl)-pyridin-2-ylmethyl)-pyridin-2-ylmethylamino]-methyl}-4-nitro-phenol (275 mg, 30 %) was obtained as a yellow oil; ¹H NMR (300.12 MHz, CDCl₃, 298 K, TMS): $\delta = 1.56$ (s, 9 H), 3.94 (s, 4 H), 4.11 (s, 2 H), 7.16 (dd, 1 H, ³J(H,H) = 7.4 Hz), 7.30-7.42 (m, 3 H), 7.51 (ddd, 1 H, ³J(H,F) = 8.4 Hz, ³J(H,H) = 8.3 Hz, ⁴J(H,H) = 2.8 Hz), 7.60 (td, 1 H, ³J(H,H) = 7.7 Hz, ⁴J(H,H) = 1.8 Hz), 7.95 (d, 1 H, ⁴J(H,H) = 2.8

Hz), 8.04 (d, 1 H, ${}^{3}J(H,H) = 8.6$ Hz), 8.17 (d, 1 H, ${}^{4}J(H,H) = 2.8$ Hz), 8.24 (dd, 1 H, ${}^{3}J(H,H) = 9.4$ Hz, ${}^{4}J(H,F) = 5.4$ Hz), 8.56 (d, ${}^{3}J(H,H) = 4.9$ Hz); ${}^{13}C$ NMR (75.465 MHz, CDCl₃, 298 K, TMS): $\delta = 29.6$ (CH₃, tBu), 35.6 (Cq), 57.3 (CH₂), 59.3 (CH₂), 59.7 (CH₂), 111.1 (d, CH, ${}^{2}J(C,F) = 21.5$ Hz), 120.3 (d, CH, ${}^{2}J(C,F) = 25.3$ Hz), 121.8 (CH), 122.8 (CH), 123.4 (CH), 123.5 (CH), 123.9 (Cq), 125.0 (CH), 128.3 (d, Cq, ${}^{3}J(C,F) = 10.1$ Hz), 131.3 (d, CH, ${}^{3}J(C,F) = 9.0$ Hz), 136.7 (d, CH, ${}^{4}J(C,F) = 5.5$ Hz), 137.3 (CH), 138.1 (Cq), 139.5 (Cq), 144.7 (Cq), 149.2 (CH), 158.0 (d, Cq, ${}^{4}J(C,F) = 2.8$ Hz), 158.2 (Cq), 160.8 (d, Cq, ${}^{1}J(C,F) = 248.3$ Hz), 163.4 (Cq); ${}^{19}F$ NMR (282.395 MHz, CDCl₃, 298 K, TMS): $\delta = 48.5$ (td, 1F, ${}^{3}J(F,H) = 8.4$ Hz, ${}^{4}J(F,H) = 5.1$ Hz); MS (DCI, NH₃ isobutane), m/z, 475 (M+H)⁺. Anal. Calcd for C₂₇H₂₇FN₄O₃: C, 68.34; H, 5.74; N, 11.81 %. Found: C, 67.95; H, 5.78; N, 11.78 %.

(1)(ClO₄⁻): 2-*tert*-butyl-6-{[(6-fluoro-quinolin-2-ylmethyl)-pyridin-2-ylmethyl-amino]-methyl}-4-nitro-phenol (300 mg, 0.633 mmol) was treated by 1 equivalent of NEt₃ in CH₃CN (10 mL) prior to addition of 1 eq of Cu(ClO₄)₂•6 H₂O (3 ml CH₃CN solution, 234 mg, 0.633 mmol). (1)(ClO₄⁻) was recrystallized by slow diffusion of Et₂O into a CH₃CN solution. Single brown crystals of (1)(ClO₄⁻) were formed and collected by filtration (342 mg, 80 %). ESI MS, m/z, 536 (M - CH₃CN - ClO₄⁺). Anal. Calcd for C₂₉H₂₉ClCuFN₅O₇: C, 51.41; H, 4.31; N, 10.34. Found: C, 51.26; H, 4.35; N, 10.40 %. UV-Vis (λ_{max} [nm] [ϵ / M⁻¹.cm⁻¹]): 510 [910], 654 [260]. EPR (9.41 GHz, CH₃CN, 100 K): broad signal at g \approx 2.

(1H)(ClO₄⁻)₂: 2-*tert*-butyl-6-{[(6-fluoro-quinolin-2-ylmethyl)-pyridin-2-ylmethyl-amino]-methyl}-4-nitro-phenol (300 mg, 0.633 mmol) was dissolved in CH₃CN (10 mL) prior to addition of 1 eq of Cu(ClO₄)₂•6 H₂O (3 ml CH₃CN solution, 234 mg, 0.633 mmol). The volume is reduced to 1 ml, and dry acetonitrile (10 mL) is added. The operation is repeated three times, until the solution turns from green to blue. (1H)(ClO₄⁻)₂ was recrystallized by slow diffusion of iPr₂O (on CaCl₂) into a CH₃CN solution. Blue crystals of (1H)(ClO₄⁻)₂ were formed and collected by filtration (200 mg, 40 %). ESI MS, m/z, 536 (M - H - CH₃CN - ClO₄⁺). Anal. Calcd for C₂₉H₂₉Cl₂CuFN₅O₁₁: C, 44.77; H, 3.89; N, 9.00. Found: C, 44.70; H, 3.89; N, 8.90 %. UV-Vis (λ_{max} [nm] [ϵ / M⁻¹.cm⁻¹]): 630 [120]. EPR (9.41 GHz, CH₃CN, 100 K): $g_{xx} = g_{yy} = 2.065$, $g_{zz} = 2.241$, $A_{xx} = 1.0$ mT, $A_{yy} = 1.5$ mT, $A_{zz} = 17.2$ mT.

Fig S1: UV-Vis spectra of 1 mM CH₃CN solutions of 1H (solid lines) and 1 (dotted lines). T = 298 K, 1 = 1.000 cm.

Fig S2: Transmittance spectrum of a crystalline powder of 1. T = 298 K.

Fig S3: Titration of HLq^{NO2} (0.98 mM) by copper(II) perchlorate: a) 0 to 0.5 copper molar equivalent and b) 0.5 to 1 copper molar equivalent. Arrows indicate spectral changes upon addition of copper; spectra were recorded in CH₃CN at 298 K. 1 = 1.000 cm.

Fig S4: Titration of **1H** (0.97 mM) by 0 to 1 molar equivalent of NEt₃. Arrows indicate spectral changes upon addition of base; spectra recorded in CH₃CN at 298 K. 1 = 1.000 cm.

Fig S5: X-Band EPR spectra (normalized) of 1 mM CH₃CN solutions of **1H** and **1**. Microwave freq. 9.419 GHz, power: 20 mW; Mod. Freq. 100 kHz, amp. 0.197 mT (**1H**) and 0.0987 mT (**1**); T = 100 K.

Fig S6: Titration of **1H** (60 mM) by NEt₃; ¹⁹F NMR spectra were recorded in (CD₃CN : CH₃CN) (1 : 4) at 293 K. The numbers correspond to the molar equivalents of base added. The sharp peak at 48 ppm corresponds to an unidentified impurity, accounting for less than 1% of the total ¹⁹F signals. *Intensities are normalized*.

Fig S7: Titration of HLq^{NO2} (1.86 x 10⁻⁵ M) by: a) 0 to 1 copper molar equivalent of NEt₃ (no spectral changes could be observed) and b) 0 to 1 copper molar equivalent of nBu_4NOH , showing that only OH⁻ deprotonates the nitrophenol of HLq^{NO2} . Arrows indicate spectral changes upon addition of base; spectra were recorded in CH₃CN at 298 K. 1 = 1.000 cm.