Electronic Supplementary Information

A mild and convenient synthesis of \boldsymbol{N}-carbobenzyloxy ketimines

Jun-ichi Matsuo,* Yumi Tanaki, Aimi Kido, and Hiroyuki Ishibashi*
Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology
Kanazawa University
Kakuma-machi, Kanazawa 920-1192 (Japan)
Fax: (+81) 76-234-4476
E-mail: jimatsuo@p.kanazawa-u.ac.jp

General. Infrared (IR) spectra were recorded on a Shimadzu FTIR-8100. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL EX270 $(270 \mathrm{MHz})$ spectrometer; chemical shifts (δ) are reported in parts per million relative to tetramethylsilane. Splitting patterns are designated as s , singlet; d , doublet; t , triplet; q, quartet; m, multiplet; br, broad. ${ }^{13}$ C NMR spectra were recorded on a JEOL JNM EX270 $(67.5 \mathrm{MHz})$ spectrometer with complete proton decoupling. Chemical shifts are reported in parts per million relative to tetramethylsilane with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3} ; \delta 77.0\right.$ $\mathrm{ppm})$. High resolution mass spectra (HRMS) were recorded on a JEOL JMS-SX-102A mass spectrometer. Analytical TLC was performed on Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm). Silica-gel column chromatography was carried out on silica gel 60N (Kanto Kagaku Co., Ltd., spherical, neutral, 63-210 $\mu \mathrm{m}$). Preparative thin-layer chromatography (PTLC) was carried out on silica gel Wakogel B-5F. THF was distilled under argon from sodium/benzophenone ketyl. All oxidation reactions were carried out under argon in dried glassware with magnetic stirring. Kugelrohor distillation was conducted by using Shibata glass tube oven GTO-350RS.
N-tert-Butylbenzenesufinimidoyl chloride (1) ${ }^{1}$ was prepared according to the modified literature procedure of employing 1.3 equivalents of N, N-dichloro- t-butylamine, and $\mathbf{1}$ was stored in a refrigerator. N-Cbz amines (2a-i, 4a-d) were prepared by the reaction of amines and benzyl chloroformate under Schotten-Baumann's method ($\mathrm{Et}_{2} \mathrm{O}$, aq. NaOH). Some primary amines were prepared by Leuckart's method. ${ }^{2}$

Oxidation of $N-\mathrm{Cbz}$ amines was performed by the procedure described in the text. The N - Cbz ketimines should be purified rapidly. Spectrum data were shown below.

$\operatorname{Mp} 71-72{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 7.31-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $7.0,2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.8,68.1,127.5,128.3,128.4,128.5,131.8,135.5,136.7$, 163.0, 169.3; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 1717, 1647, 1233, 1204, 698; HRMS (FAB+) Calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}: 254.11810$. Found 254.11793.

3b
${ }^{1} \mathrm{H} \operatorname{NMR}\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.71(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.48$ (m, 8H), $7.77(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.2,28.1,68.0,127.65,128.3$, $128.5,131.4,135.3,135.6,162.8,174.5$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1713,1644,1225,1208,698 ;$ HRMS (FAB+) Calculated for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}: 268.13375$. Found 268.13358.

```
        O
    N O Ph
Ph
    3c
\({ }^{1} \mathrm{H}\) NMR ( \(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\) ) \(\delta 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dd}, J=7.8,7.8 \mathrm{~Hz}, 2 \mathrm{H})\), \(5.26(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}\) NMR ( \(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) \(\delta 13.9,21.1\), \(36.4,68.0,127.7,128.3,128.4,128.6,131.4,135.6,136.0,162.8,173.5\); IR \(\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1713,1644\), 1224, 698; HRMS (FAB+) Calculated for \(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}\) : 282.14940. Found 282.14934.
```


3d

${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{HHz}, \mathrm{CDCl}_{3}$) $\delta 1.17(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 3.03$ (sept, $\left.J=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05(\mathrm{~s}, 2 \mathrm{H})$, 7.11-7.37 (m, 10H); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.6,36.8,67.7,126.4,128.1,128.3,128.3,128.4$, 129.9, 135.4, 137.2, 162.6, 180.4; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1713,1651,1210,909,785$; HRMS (FAB+) Calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~N}: 282.14940$. Found 282.14912.

${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{HHz}, \mathrm{CDCl}_{3}$) $\delta 2.49(\mathrm{~s}, 3 \mathrm{H}), 5.16(\mathrm{brs}, 2 \mathrm{H}), 7.26-7.51(10 \mathrm{H}, \mathrm{m}), 7.84(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 68.0,124.6,125.1,126.3,127.0,128.2,128.4,133.5,135.3$, 136.1, 161.9; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3019,1732,1509,1225,1208,785,738$; HRMS (FAB+) Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}: 304.13375$. Found 304.13206.

${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 2.33(\mathrm{~s}, 3 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 7 \mathrm{H}), 7.81(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.8,68.2,128.5,128.5,128.6,128.7,129.0,135.1,135.4,138.2$, 162.8, 168.2; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1717,1649,1229,909$

$3 i$
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 2.38(\mathrm{~s}, 3 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 7.33-7.45(\mathrm{~m}, 6 \mathrm{H}), 8.20(\mathrm{~m}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J$ $=1.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.06(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.6,68.3,123.3,128.5$, 128.6, 132.3, 134.8, 135.3, 149.0, 152.5, 162.5, 167.5; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 1721,1653,1231,754$; Calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{2}: 255.11336$. Found 255.11384.

0
HN O Ph

N
$3 i$
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 4.99(\mathrm{~s}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 5.63(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{brs}, 1 \mathrm{H}), 7.24-7.36(\mathrm{~m}$, $6 \mathrm{H}), 7.71(\mathrm{~m}, 1 \mathrm{H}), 8.54(\mathrm{dd}, J=1.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (67.8 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 67.2,123.2,128.3,128.4,128.6,133.5,133.7,135.8,138.1,147.5,149.7$; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right)$ 3432, 1783, 1514; HRMS (FAB+) Calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{2}: 255.11336$. Found 255.11293.

$7 a$
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 1.3-2.0(\mathrm{~m}, 10 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 5.03(\mathrm{brs}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 7.2-7.4(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.3,25.2,34.1,48.1,66.2,85.2,128.0,128.4,136.4,154.2 ;$ IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3440,1732,1505$; HRMS (FAB+) Calculated for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}: 264.15997$. Found 264.15951.

7b
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.6-2.2 (m, 8H), 3.19 (s, 3H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 5.48$ (brs, 1H), 7.3-7.4 (m, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.7,36.5,49.7,94.4,127.9,128.0,128.4,136.3$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right.$, cm^{-1}) 1732, 1503; HRMS (FAB+) Calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{~N}: 250.14432$. Found 250.14426.

7d
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{HHz}, \mathrm{CDCl}_{3}\right) \delta 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.69-1.99(\mathrm{~m}, 4 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 4.95(\mathrm{brs}, 1 \mathrm{H})$, 5.08 (s, 2H), 7.31-7.35 (m, 5H); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.4,25.9,48.4,66.2,89.3,127.9$, 127.9, 128.4, 136.4, 154.0; IR $\left(\mathrm{CHCl}_{3}, \mathrm{~cm}^{-1}\right) 3441,1734,1507,909$; Calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~N}$: 252.15997. Found 252.15906.

Typical experimental procedure for synthesis of ene carbamate $\mathbf{5 a}$ (Table 2, Entry 1, Scheme 3): to a stirred solution of N-Cbz cyclohexylamine ($100.2 \mathrm{mg}, 0.43 \mathrm{mmol}$) in dry THF (2 mL) was added a solution of $n-\operatorname{BuLi}(1.60 \mathrm{~N}$ in hexane, $0.31 \mathrm{~mL}, 0.50 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the yellow solution was stirred for 20 min at the same temperature. A solution of $\mathbf{1}(136 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (1 mL) was added at $-78^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 30 min at the same temperature. $\mathrm{MeOH}(0.5$ mL) was then added at $-78{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 1 h . The reaction
was quenched by adding saturated NaHCO_{3}, and the mixture was extracted with AcOEt (three times). The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by thin layer chromatography on silica gel (hexane/AcOEt) to afford $\mathbf{7 a}(90.8 \mathrm{mg}, 0.34 \mathrm{mmol})$.

Kugelrohr distillation of $\mathbf{7 a}(90.8 \mathrm{mg}, 034 \mathrm{mmol})$ gave $\mathbf{5 a} \mathbf{a}^{\prime}(79.1 \mathrm{mg}, 0.34 \mathrm{mmol})$ as a colorless oil.

Cyclohex-1-enylcarbamic acid benzyl ester (5a') ${ }^{3}$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.27-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.70-2.00(\mathrm{~m}, 4 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}) 5.59$ (brs, 1H), 6.03
(brs, 1 H), 7.05-7.24 (m, 5H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 22.4,22.8,24.1,27.7,66.5,109.5,128.2$, $128.5,128.6,132.5,137.3,153.4$.

[^0]
[^0]: ${ }^{1}$ Matsuo, J.-i.; Iida, D.; Tatani, K.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 2002, 75, 223.
 ${ }^{2}$ Dalmolen, J.; Tiemersma-Wegman, T. D.; Nieuwenhuijzen, J. W.; van der Sluis, M.; van Echten, E.; Vries, T. R.; Kaptein, B.; Broxterman, Q. B.; Kellogg, R. M. Chem. Eur. J. 2005, 11, 5619-5624.
 ${ }^{3}$ Matsubara, R.; Vital, P.; Nakamura, Y.; Kiyohara, H.; Kobayashi, S. Tetrahedron 2004, 60, 9769-9784.

