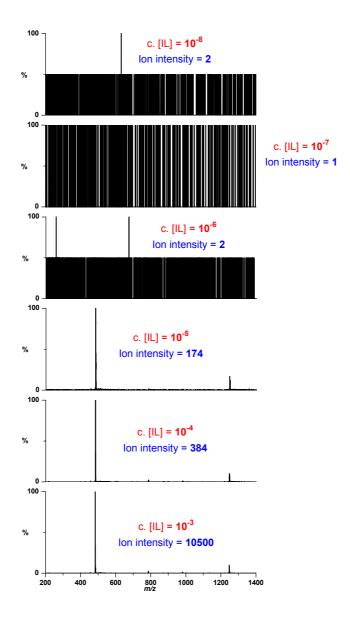
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 Supporting information for:

Ionic liquids enable electrospray ionisation mass spectrometry in hexane

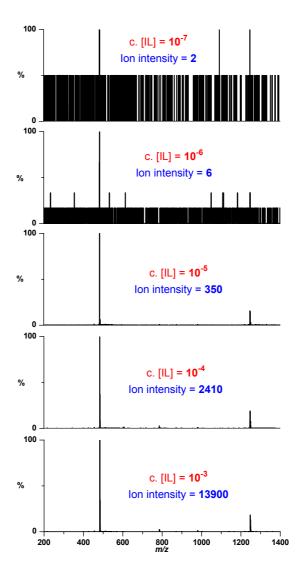
Matthew A. Henderson and J. Scott McIndoe

Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3V6, Canada.

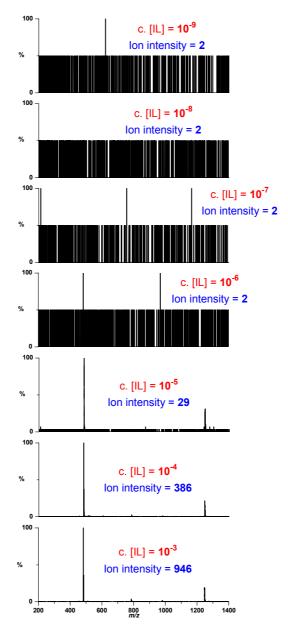

General experimental details

1 was purchased from Aldrich and used as provided but handled in an inert-atmosphere glovebox. Hexane and toluene were HPLC-grade, and were dried and purged of oxygen using an MBraun solvent-purification system. Pentane, cyclohexane and benzene were HPLC-grade. $(C_2H_4O)_6$ ("18-crown-6") was purchased from Aldrich.

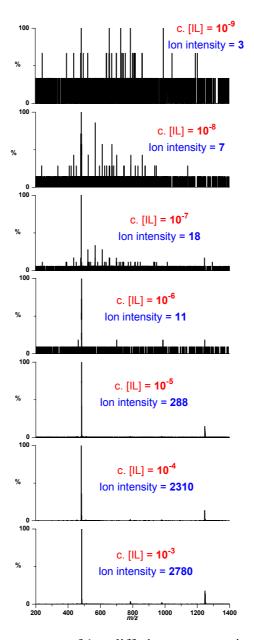
Mass spectra of 1 in various non-polar solvents


ESI-MS of 1 were collected in positive-ion mode in hexane, pentane, cyclohexane, benzene and toluene. Concentrations of 1 are noted on the spectra. "Ion intensity" refers to the ion current for the base peak. Spectra were collected for 1 minute in all cases, summing 60 individual mass spectra. Relatively high solvent flow rates tend to improve spectra quality; these spectra were collected at 10 μ L min⁻¹ but flow rates of up to 40 μ L min⁻¹ often improved the ion current significantly.

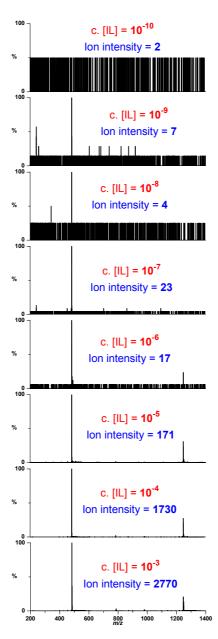
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **Hexane**


Figure SI1. Positive-ion ESI mass spectra of **1** at differing concentrations in hexane. Each spectrum was collected over 1 minute (60 summed spectra). A stable spray and good spectra are obtained at a threshold of $\sim 10^{-5}$ mol L⁻¹.

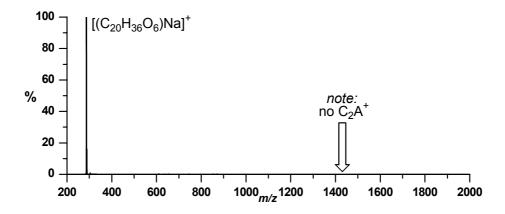
Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **Pentane**


Figure S12. Positive-ion ESI mass spectra of **1** at differing concentrations in pentane. Each spectrum was collected over 1 minute (60 summed spectra). A stable spray and good spectra are obtained at a threshold of $\sim 10^{-5}$ mol L⁻¹.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **Cyclohexane**


Figure SI3. Positive-ion ESI mass spectra of **1** at differing concentrations in cyclohexane. Each spectrum was collected over 1 minute (60 summed spectra). A stable spray and good spectra are obtained at a threshold of $\sim 10^{-5}$ mol L⁻¹.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **Benzene**


Figure SI4. Positive-ion ESI mass spectra of **1** at differing concentrations in benzene. Each spectrum was collected over 1 minute (60 summed spectra). A stable spray and good spectra are obtained at a threshold of $\sim 10^{-5}$ mol L⁻¹, though the IL can be detected at a satisfactory signal-to-noise ratio at $\sim 10^{-7}$ mol L⁻¹.

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2006 **Toluene**

Figure S15. Positive-ion ESI mass spectra of **1** at differing concentrations in toluene. Each spectrum was collected over 1 minute (60 summed spectra). A stable spray and good spectra are obtained at a threshold of $\sim 10^{-5}$ mol L⁻¹, though the IL can be detected at a satisfactory signal-to-noise ratio at $\sim 10^{-7}$ mol L⁻¹.

$[(C_2H_4O)_6Na][BAr^F_4]$ (3)

Figure S16. Positive-ion ESI mass spectrum of **3** in toluene. Similarly, the negative-ion spectrum shows no CA_2^- ion, only A^- .