Supporting Materials

A Sugar-Quinoline Fluorescent Chemosensor For Highly Selective

Detection of Hg²⁺ Ion in Natural Water

Ou Shengju, Zhihua Lin, Chunying Duan*, Haitao Zhang and Zhiping Bai*

Coordination Chemistry Institute and the State Key Laboratory of Coordination Chemistry, and Department of Materials & Engineering, Nanjing University, Nanjing 210093, China

Experimental

Reagents and methods. All reagents used were analytical pure. ¹H NMR spectra were recorded on a Bruker spectrometer using d₆-DMSO and D₂O with TMS as an internal standard. The electrospray mass spectra (ESI-MS) were determined on a Finnigan LCQ mass spectrometer, methanol or water as mobile phase. Fluorescence emission spectra were obtained using AB-series2 luminescence spectrometer. Fluorescence determination was done in water solution. The perchloride or nitrate salts of metal ions were used. The fluorescence quatum yields were determined by using 1×10^{-5} M [Ru(2,2'bipyridine)₃]perchlorate acetonitrile solution as reference ($\Phi = 0.059$) excitation at 450nm. ¹H NMR titration was completed in the d₆-DMSO and D₂O mixed solution (V: V = 1:1).

Figure S1. Fluorescence spectra of QG with ten equiv. cations in aquous solution, $[QG] = 1 \times 10^{-5}$ M, excitation at 315nm.

Figure S2. UV-vis spectra of QG and QG with 5 equiv of Hg^{2+} , $[QG] = 1 \times 10^{-5} M$.

Figure S3. ¹H NMR spectra of QG (1.0×10^{-3} M) in d₆-DMSO