Supplementary Material

An alkynylboronic ester cycloaddition route to functionalised aromatic boronic esters

Patrick M. Delaney, ${ }^{\text {a }}$ Jane E. Moore ${ }^{\text {a }}$ and Joseph P. A. Harrity ${ }^{*}{ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF

General Procedures

Infrared (IR) Spectra were recorded on a Perkin Elmer Paragon 100 FTIR spectrophotometer, $\mathrm{v}_{\max }$ in cm^{-1}. Samples were recorded as thin films using sodium chloride plates, as a DCM solution. Bands are characterised as broad (br), strong (s), medium (m), and weak (w). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AC-250 (250 MHz) or AMX-400 $(400 \mathrm{MHz})$ supported by an Aspect 3000 data system, unless otherwise stated. Chemical shifts are reported in ppm from tetramethylsilane with the residual protic solvent resonance as the internal standard ($\mathrm{CHCl}_{3}: \delta 7.27 \mathrm{ppm}$). Data are reported as follows: chemical shift, integration, multiplicity ($s=s i n g l e t, d=d o u b l e t, q=q u a r t e t, ~ p e n t=p e n t e t, ~ s e x t=s e x t e t, ~ b r=b r o a d, ~$ $\mathrm{m}=$ multiplet, app=apparent), coupling constants (Hz), and assignment. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AC-250 (62.9 MHz) or AMX-400 (100.6 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent as the internal reference ($\left.\mathrm{CDCl}_{3}: \delta 77.0 \mathrm{ppm}\right)$. Low resolution mass spectra were recorded on Micromass Autospec, operating in E.I., C.I. or FAB mode; or a Perkin-Elmer Turbomass Benchtop GC-MS operating in either E.I. or C.I mode. High-resolution mass spectra (HRMS) recorded for accurate mass analysis, were performed on either a MicroMass LCT operating in Electrospray mode (TOF ES ${ }^{+}$) or a MicroMass Prospec operating in FAB (FAB ${ }^{+}$), $\mathrm{El}\left(\mathrm{El}^{+}\right)$or $\mathrm{Cl}\left(\mathrm{Cl}^{+}\right)$mode. Elemental microanalysis was performed using a Perkin-Elmer 2400 CHNS / O Series II Elemental Analyser. Melting points performed on recrystallised solids, were recorded on a Gallenkamp melting point apparatus and are uncorrected. All solvents and reagents were purified using standard laboratory techniques according to methods published in "Purification of Laboratory Chemicals" by Perrin, Armarego, and Perrin (Pergamon Press, 1966). Starting alkynylboronates ${ }^{1}$ and pyranones ${ }^{2}$ were prepared according to established procedures. Methyl coumalate was purchased from Aldrich chemical co. and used as received. Flash chromatography was performed on silica gel (BDH Silica Gel 60 43-60). Thin layer chromatography (TLC) was performed on aluminium backed plates pre-coated with

[^0]silica (0.2 mm , Merck DC-alufolien Kieselgel $60 \mathrm{~F}_{254}$) which were developed using standard visualizing agents: Ultraviolet light or potassium permanganate. X-Ray data for compounds 13 and 15 have been deposited with the CCDC, supplementary entry numbers: 608269 and 608270 respectively.

1.1. [4+2] Cycloaddition

Cycloaddition of 1 with 2a

A mixture of $1(0.1 \mathrm{~g}, 1.04 \mathrm{mmol})$ and $\mathbf{2 a}(0.466 \mathrm{~g}, 2.08 \mathrm{mmol})$ was heated at $170{ }^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give compound 3 as crystalline colourless solid, wt. $0.247 \mathrm{~g}, 86 \%$ yield.

Mp $84-86{ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.33\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right)$, $1.34\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 7.36$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$) 7.61 (1H, m, Ar-H), $7.90(1 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.1,25.0$, 83.8, 127.8, 129.7, 134.3, 136.1, 146.0; FTIR: $v_{\max } / \mathrm{CHCl}_{3}, 2981$ (s) cm^{-1}; HRMS (EI $)$ calcd for. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BO}_{2} \mathrm{Si}: 276.1717$. Found: 276.1715 .

Cycloaddition of 4 with 2a

A mixture of $4(0.1 \mathrm{~g}, 0.649 \mathrm{mmol})$ and $\mathbf{2 a}(0.291 \mathrm{~g}, 1.298 \mathrm{mmol})$ was heated at $170{ }^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give $\mathbf{6 a}$ and $\mathbf{6 b}$ ($3: 1$ ratio) as colourless
oils, wt. $0.152 \mathrm{~g}, 70 \%$ yield. The regiochemistry was determined by 2-D NMR experiment (nOesy) of the major regioisomer $\mathbf{6 a}$.

6a : ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.29\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.86(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.62(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Ar}-H), 7.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.0,1.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}), 8.43(1 \mathrm{H}, \mathrm{d}, J=1.5$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}) $\delta 0.8,25.0,52.0,84.1,129.7,130.2,134.4,136.4$, 153.3, 167.4; FTIR: $v_{\max } / \mathrm{CHCl}_{3}, 2979$ (m), 2951 (w), 2901 (w), 1726 (s), 1593 (w), 1551 (w) cm^{-1}; HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4}$ BSi 335.1850 Found: 335.1857

6b: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.36\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{3}\right), 1.35\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.91(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.96(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.4$, 25.0, 52.1, 84.2, 128.5, 130.5, 134.8, 135.9, 147.3, 167.5; FTIR $v_{\max } / \mathrm{CHCl}_{3} 2979$ (m), 2952 (w), 1726 (s), 1595 (w), 1548 (w) cm^{-1}; HRMS (El^{+}) calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{BSi} 335.1850$. Found: 335.1839

Cycloaddition of 5 with 2a

A mixture of $5(0.2 \mathrm{~g}, 1.298 \mathrm{mmol})$ and $\mathbf{2 a}(0.582 \mathrm{~g}, 2.595 \mathrm{mmol})$ was heated at $170^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give the separated title compounds $\mathbf{6 a}$ and $\mathbf{6 b}$ (1:1 ratio) as colourless oils, wt. $0.384 \mathrm{~g}, 83 \%$ yield.

Cycloaddition of 4 with 2b

A mixture of $4(0.1 \mathrm{~g}, 0.649 \mathrm{mmol})$ and $\mathbf{2 a}(0.296 \mathrm{~g}, 1.298 \mathrm{mmol})$ was heated at $170^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting
solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give $\mathbf{7 a}$ and $\mathbf{7 b}$ (1:1 ratio) as a clear oil, 0.092g, 42\%.

7a ${ }^{1} \mathrm{H}$ NMR: $\delta 1.23\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.35-7.48(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 8.12(1 \mathrm{H}$, dd, J=8.0, 2.0 Hz, Ar-H) 8.38 (1H, dd, J=2.0, $0.5 \mathrm{~Hz}, \mathrm{Ar}-H) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.6,52.1,84.0,127.0,127.5,127.9,128.9,129.0,130.0,135.6,142.1,151.9,167.0$.

7b ${ }^{1} \mathrm{H}$ NMR: $\delta 1.21\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 3.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.35-7.48(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.56(1 \mathrm{H}$, d, J=8.0 Hz, Ar-H), $7.98(1 \mathrm{H}, \mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, \operatorname{Ar}-H), 8.04(1 \mathrm{H}, \mathrm{dd}, J=1.0,0.5 \mathrm{~Hz}, \mathrm{Ar}-H) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}) $\delta 24.7,52.2,84.1,127.0,127.2,127.5,128.0,129.0,129.1,135.7$, 142.0, 147.9, 167.0.

FTIR: $v_{\text {max }} / \mathrm{CHCl}_{3}, 2991$ (w), 2979 (w), 2940 (w), 1723 (s), 1600 (w) cm ${ }^{-1}$; HRMS (El^{+}) calcd. for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{~B}: 338.1689$ Found: 338.1687 .

Cycloaddition of 5 with 2b

A mixture of $5(0.1 \mathrm{~g}, 0.649 \mathrm{mmol})$ and $\mathbf{2 b}(0.296 \mathrm{~g}, 1.298 \mathrm{mmol})$ was heated at $170^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give compounds $\mathbf{7 a}$ and $\mathbf{7 b}$ (1:14 ratio) as a clear oil, $0.127 \mathrm{~g}, 57 \%$ yield. The regiochemistry was determined by 2-D NMR experiment (nOesy) of the major regioisomer 7b.

Cycloaddition of 4 with 2c

A mixture of $4(0.1 \mathrm{~g}, 0.649 \mathrm{mmol})$ and $\mathbf{2 c}(0.270 \mathrm{~g}, 1.298 \mathrm{mmol})$ was heated at $170^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $\mathbf{2 5 : 1}$ ratio) to give compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ ($10: 1$ ratio) as
a clear oil, wt. $0.050 \mathrm{~g}, 24 \%$ yield. The regiochemistry was determined by 2-D NMR experiment (nOesy) of the major regioisomer 8a.

8a ${ }^{1} \mathrm{H}$ NMR: $\delta 0.85\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.28\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 1.22-1.37(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38-1.56\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.85(2 \mathrm{H}, \text { app t, J=8.0 Hz, C=CCH})_{2}, 3.88(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CO}_{2} \mathrm{CH}_{3}$), $7.16(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{Ar}-H), 7.92(1 \mathrm{H}, \mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, \mathrm{Ar}-H), 8.34(1 \mathrm{H}, \mathrm{d}, J=2.0$ $\mathrm{Hz}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.7,24.8,35.3,35.6,51.9,83.7,126.8,129.3$, 131.8, 137.2, 155.5, 167.3.

8b ${ }^{1} \mathrm{H}$ NMR: $\delta 0.85\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.28\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 1.22-1.37(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.38-1.56 (2H, m, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.85(2 \mathrm{H}$, app t, J=8.0 Hz, C=CCH), $3.89(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 7.79(2 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}), 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.9,22.7$, $24.8,35.2,35.4,52.0,83.8,125.6,129.9,131.8,135.8,150.2,167.3$.

FTIR: $v_{\text {max }} / \mathrm{CHCl}_{3}, 2977$ (m), 2956 (m), 2931 (m), $2870(\mathrm{~m}), 1723(\mathrm{~s}) \mathrm{cm}^{-1}$ HRMS (El ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{~B}: 318.2002$ Found: 318.2012

Cycloaddition of 5 with 2c

A mixture of $5(0.1 \mathrm{~g}, 0.649 \mathrm{mmol})$ and $\mathbf{2 c}(0.270 \mathrm{~g}, 1.298 \mathrm{mmol})$ was heated at $170{ }^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $\mathbf{2 5 : 1}$ ratio) to give compounds $\mathbf{8 a}$ and $\mathbf{8 b}$ ($1: 3$ ratio) as a clear oil, wt. $0.127 \mathrm{~g}, 59 \%$ yield. The regiochemistry was determined by 2-D NMR experiment (nOesy) of the major regioisomer 8b.

Cycloaddition of 5 with 2d

Supplementary Material (ESI) for Chemical Communications
 This journal is © The Royal Society of Chemistry 2006

A mixture of $5(0.1 \mathrm{~g}, 0.649 \mathrm{mmol}), 2 \mathrm{~d}(0.09 \mathrm{~g}, 0.649 \mathrm{mmol})$ and diphenylether (1 mL) were heated at $170{ }^{\circ} \mathrm{C}$ with stirring, for 15 hours under a nitrogen atmosphere. The product was purified by flash column chromatography (eluting solvent 100: 1 petroleum ether: EtOAc) to give colourless crystalline solid of regioisomers in 5: 1 ratio (Major regioisomer was 9a) wt. $0.130 \mathrm{~g}, 77 \%$ yield.

9a ${ }^{3}:{ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta 1.28\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 7.79(2 \mathrm{H}, \mathrm{d}$, $J=8.5 \mathrm{~Hz}, \mathrm{ArH}), 7.96(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.8,52.1,84.1$, 127.8, 135.8, 134.6, 167.1

9b: ${ }^{1} \mathrm{H}$ NMR $\delta 1.28\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 7.38(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.90$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.05(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.0,1.0 \mathrm{~Hz}, \mathrm{ArH}), 8.39(1 \mathrm{H}, \mathrm{br}, \operatorname{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz , CDCl_{3}): $\delta 24.8,52.0,84.1,128.6$ (x 2), 132.3 (x 2), 139.1, 167.1.

FTIR: $v_{\max } / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2979$ (w), 1727 (s), 1606 (w), 1510 (w), 1399 (m), 1361 (s). HRMS (EI ${ }^{+}$) Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{O}_{4}$ 262.1376 Found: 262.1377.

Cycloaddition of 10 with 2a

A mixture of $10(0.100 \mathrm{~g}, 0.394 \mathrm{mmol})$ and $\mathbf{2 a}(0.176 \mathrm{~g}, 0.788 \mathrm{mmol})$ and mesitylene (1 mL) was heated at $155{ }^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give compounds 12a and 12b (1:1 ratio) as a brown oil, wt. $0.111 \mathrm{~g}, 65 \%$ yield.

12a/b mixture: ${ }^{1} \mathrm{H}$ NMR $\delta 0.29\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.37\left(9 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.29\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.37(12 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 7.47(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}$), $7.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.59 (1H, d, J=2.0 Hz, ArH), $7.64(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}){ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-0.5,1.8,24.7,25.3,84.5,85.5$, 112.5(x2), 134.3(x2), 134.8(x2), 135.0(x2), 136.3(x2).

FTIR: $v_{\max } / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2980$ (s), 1315 (s), 846 (s). HRMS (El^{+}) Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{BBr}_{2} \mathrm{O}_{2} \mathrm{Si}$ 431.9927 Found: 431.9909.

[^1]Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Cycloaddition of 10 with 2b

A mixture of $\mathbf{1 0}(0.200 \mathrm{~g}, 0.788 \mathrm{mmol})$ and $\mathbf{2 b}(0.269 \mathrm{~g}, 1.182 \mathrm{mmol})$ and mesitylene (1 mL) was heated at $155^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give compound 13 as brown solid, $0.214 \mathrm{~g}, 62 \%$ yield. The regiochemistry was determined by X-ray crystallography.

Mp 54-56 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $81.06\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 7.28(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.36(3 \mathrm{H}, \mathrm{m}, \operatorname{ArH}), 7.72(1 \mathrm{H}, \mathrm{d}$, $J=2.0 \mathrm{~Hz}, \mathrm{ArH}$), 7.85 (1H, d, J=2.0 Hz, ArH). ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 24.4,84.2,113.3$, 114.0, 115.0, 117.5, 122.0, 127.6, 129.5, 135.4, 136.3. FTIR: $v_{\max } / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2979$ (w), 2979(s), 1458 (w), 1145 (w). HRMS (El^{+}) Calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BBr}_{2} \mathrm{O}_{2} 381.0490$ Found: 381.0486.

Cycloaddition of 10 with 2c

A mixture of $10(0.100 \mathrm{~g}, 0.394 \mathrm{mmol})$ and $\mathbf{2 c}(0.123 \mathrm{~g}, 0.591 \mathrm{mmol})$ and mesitylene (1 mL) was heated at $155^{\circ} \mathrm{C}$ and stirred for 15 h under N_{2}. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give compounds 14a and 14b as a brown oil, wt. $0.077 \mathrm{~g}, 47 \%$ yield. The regiochemistry was determined by NMR experiment (nO O) of the major regioisomer 14a.

14a: ${ }^{1} \mathrm{H}$ NMR $\delta 0.87\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26\left(12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27-1.36\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.92$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{C}=\mathrm{CCH}_{2}\right), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}, \mathrm{ArH}), 7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz} \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $813.9,22.9,24.8,34.4,35.4,81.5,125.6,130.4,134.9,137.3,137.7$.

FTIR: $v_{\text {max }} / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2958$ (s). HRMS (El^{+}) Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{BBr}_{2} \mathrm{O}_{2} 416.0158$ Found: 416.0162.

Cycloaddition of 11 with 2b

A mixture of $11(0.1 \mathrm{~g}, 0.429 \mathrm{mmol})$ and $\mathbf{2 b}(0.391 \mathrm{~g}, 1.716 \mathrm{mmol})$ was heated at $170^{\circ} \mathrm{C}$ and stirred for 15 h under vacuum 10 mmHg . The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $25: 1$ ratio) to give compound 89 as brown solid, $0.099 \mathrm{~g}, 56 \%$ yield. The regiochemistry was determined by X-ray crystallography.

Mp 109-111 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\delta 1.01$ ($12 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 7.30(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.71$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \operatorname{ArH}$), 8.28 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz} \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR (62.9 MHz , CDCl_{3}): $824.9,52.6,82.1,122.9,128.5,128.8,129.5,130.9,131.6,134.7,140.6,147.4$, 166.1. FTIR: $v_{\max } / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2978$ (w), 1727 (s). HRMS (EI') Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BBrO}_{4}$ 417.0873 Found: 417.0886.

Suzuki reaction of 13 with p-iodotoluene

A round bottom flask was charged with $13(0.260 \mathrm{~g}, 0.594 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{DCM}(0.043 \mathrm{~g}$, $0.059 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(0.378 \mathrm{~g}, 1.780 \mathrm{mmol})$, dioxane (1 ml) and iodotoluene $(0.259 \mathrm{~g}, 1.187$ $\mathrm{mmol})$. The flask was fitted with a reflux condenser and heated at $85^{\circ} \mathrm{C}$ under N_{2}. After stirring for 48 h the reaction was cooled to room temperature and quenched by the addition of distilled water (10 ml), the product was extracted into dichloromethane ($3 \times 10 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and conc. in vacuo. The product was purified by flash column

Supplementary Material (ESI) for Chemical Communications

This journal is © The Royal Society of Chemistry 2006
chromatography (eluting solvent petroleum ether/ethyl acetate 15:1 ratio) to give compound 16 as clear oil, wt. 0.133 g, 56% yield.
${ }^{1} \mathrm{H}$ NMR $82.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.86-6.95(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.24-7.20(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.49-7.50(3 \mathrm{H}, \mathrm{m}$, ArH), $7.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}, \mathrm{ArH}), 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0, \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}): $\delta 21.3,113.1,113.9,114.2,115.1,126.5,127.3,127.7,128.5,129.3,130.1,130.4$, 133.8, 134.3, 135.0. FTIR: $v_{\max } / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2923$ (w). HRMS (El ${ }^{+}$) Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Br}_{2}$ 399.9462 Found: 399.9462.

Suzuki reaction of 13 with p-iodotoluene

A round bottom flask was charged with $14(0.088 \mathrm{~g}, 0.211 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf}) \mathrm{DCM}(0.015 \mathrm{~g}$, $0.021 \mathrm{mmol}), \mathrm{K}_{3} \mathrm{PO}_{4}(.134 \mathrm{~g}, 0.633 \mathrm{mmol})$, dioxane (1 ml) and iodotoluene ($0.092 \mathrm{~g}, 0.422$ mmol). The flask was fitted with a reflux condenser and heated at $85{ }^{\circ} \mathrm{C}$ under N_{2}. After stirring for 48 h the reaction was cooled to room temperature and quenched by the addition of distilled water (10 ml), the product was extracted into dichloromethane ($3 \times 10 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and conc. in vacuo. The product was purified by flash column chromatography (eluting solvent petroleum ether/ethyl acetate $15: 1$ ratio) to give compound 17 as colourless oil, wt. $0.076 \mathrm{~g}, 70 \%$ yield.
${ }^{1} \mathrm{H}$ NMR $82.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{OCO}\right), 6.82-6.90(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 6.98-7.02 $(2 \mathrm{H}, \mathrm{m}$, ArH), $7.18(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{ArH}), 8.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.5 \mathrm{~Hz}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.1,52.4,124.7,127.4,127.7,128.5,129.4,130.2,130.4,132.5$, 133.4, 136.7, 137.2, 139.5, 143.7, 145.5, 165.7. FTIR: $v_{\max } / \mathrm{CHCl}_{3}, \mathrm{~cm}^{-1} 2360$ (w)' 1725 (s), 1240 (s). HRMS (EI ${ }^{+}$) Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{BrO}_{2} 380.0412$ Found: 380.0413

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

[^2]Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

Pd 141 Crude
18Harrity08

Pd 141 Crude
18Harrity08 1210 (13.134)
Scan CI+

Pd 141 Crude
18Harrity08 1223 (13.275)
Scan Cl+

-

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Pd 140 Crude

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

P.Delaney PD157.1521
4
8a
8b
25Harrity10

P.Delaney PD157.1521

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

[^3]

Supplementary Material (ESI) for Chemical Communications
This journal is © The Royal Society of Chemistry 2006

[^0]: ${ }^{1}$ H. C. Brown, N. G. Bhat, M. Srebink, Tetrahedron Lett, 1982, 29, 2631.
 ${ }^{2}$ A. Haneda, H. Uenakai, T. Imawaga, M. Kawanisi, Synth. Comm, 1976, 6, 141; I.W. Ashworth, M.C. Bowden, B. Dembofsky,D. Levin, W. Moss, E. Robinson, N. Szczur, J. Virica, Org. Proc. Res. Dev., 2003, 7, 74; C.G. Cho, Y.W. Kim, Y.K. Lim, J.S. Park, H. Lee, S. Koo, J. Org. Chem, 2002, 67, 290.

[^1]: ${ }^{3}$ N. Miyaura, M. Murata, I. Tatsuo, J. Org. Chem., 1995, 60, 7508.

[^2]: Supplementary Material (ESI) for Chemical Communications
 This journal is © The Royal Society of Chemistry 2006

[^3]: Supplementary Material (ESI) for Chemical Communications
 This journal is © The Royal Society of Chemistry 2006

