SUPPLEMENTARY INFORMATION

Guest-Induced Formation of an Icosahedral Coordination Cage

Thomas Brasey, Rosario Scopelliti, and Kay Severin

Synthesis of complex 3: [(cymene) $\left.\mathrm{RuCl}_{2}\right]_{2}(30.6 \mathrm{mg}, 0.05 \mathrm{mmol})$, and AgNO_{3} ($34.0 \mathrm{mg}, 0.20$ mmol) were dissolved in acetone (2 ml) and stirred for 1 h at room temperature. After separation of the AgCl precipitate, the solvent was removed in vacuum and the oily residue was immediately redissolved in $\mathrm{H}_{2} \mathrm{O}$ (2 ml). Pyridine-3,5-dicarboxylic acid ($16.7 \mathrm{mg}, 0.10 \mathrm{mmol}$) was added and the mixture was stirred for 4 h at $60^{\circ} \mathrm{C}$. The yellow precipitate was collected by filtration, washed with $\mathrm{H}_{2} \mathrm{O}$, and dried (yield $20.4 \mathrm{mg}, 48 \%$). Elemental analysis (\%) calc. for $\mathrm{C}_{102} \mathrm{H}_{102} \mathrm{~N}_{6} \mathrm{O}_{24} \mathrm{Ru}_{6} \cdot 7 \mathrm{H}_{2} \mathrm{O}$: C 48.45, H 4.62, N 3.32; found: C 48.07, H 4.71, N 3.76. MS-ESI: calc. for $[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ 2403.4; found, 2403.2. Single crystals were grown by slow diffusion of diethyl ether in a solution of the product in methanol.
${ }^{1} \mathbf{H}$ NMR data for complex 3 ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D}_{3} \mathbf{O D}$): $\delta(\mathrm{ppm})=1.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{CH}_{3}\right.$, cymene), 1.93 (s, $18 \mathrm{H}, \mathrm{CH}_{3}$, cymene), 2.78 (sept, ${ }^{3} \mathrm{~J}=7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}$, cymene), 5.86 (d, ${ }^{3} \mathrm{~J}=6 \mathrm{~Hz}$, $12 \mathrm{H}, \mathrm{CH}$, cymene), 6.16 (d, ${ }^{3} \mathrm{~J}=6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}$, cymene), 8.40 (br, $6 \mathrm{H}, \mathrm{CH}$, pyridine), 9.64 (br, 12 H, CH, pyridine).

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}$.
${ }^{13} \mathbf{C}$ NMR data for complex 3 ($101 \mathbf{~ M H z , ~ C D} \mathbf{3} \mathbf{O D}$): $\delta(\mathrm{ppm})=19.83\left(\mathrm{CH}_{3}\right.$, cymene), $24.68\left(\mathrm{CH}_{3}\right.$, cymene), 34.00 (CH, cymene), 81.68 (CH, cymene), 86.27 (CH, cymene), 100.76 (C, cymene), 104.87 (C, cymene), 136.36, 136.42, 141.40, 141.45 (C and CH, pyridine), 158.98 (CH, pyridine), 174.17 (COO).

Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of complex $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

NMR experiments for the interaction of complex $\mathbf{3}$ with MOAc ($\mathbf{M}=\mathbf{N a}, \mathbf{K}, \mathbf{C s}$): $234 \mu \mathrm{l}$ of a stock solution of MOAc (320 mm) was added to a solution of complex $\mathbf{3}$ ($18 \mathrm{mg}, 7.5 \mu \mathrm{~mol}$) in $\mathrm{CD}_{3} \mathrm{OD}(366 \mu \mathrm{l})$. NMR spectra were recorded after an equilibration time of 30 minutes. Final concentrations: [3] = 12.5 mM , [salt] = 125 mM . Experiments with different MOAc concentrations were performed accordingly.

Figure S4. Differences of the chemical shifts of selected ${ }^{13} \mathrm{C}$ (top) and ${ }^{1} \mathrm{H}$ NMR signals (bottom) of complex $\mathbf{3}$ upon addition of 10 equivalents of MOAc.

