One Pot Synthesis and Third-order Nonlinear Optical Properties of AgInS₂ Nanocrystals

Lu Tian,^a Hendry Izaac Elim,^b Wei Ji^{b*} and Jagadese J. Vittal^a*

^a Department of chemistry, National University of Singapore, 3 Science Drive 3, SINGAPORE 117543. E-mail: <u>chmjjv@nus.edu.sg</u>

^b Department of Physics, National University of Singapore, 2 Science Drive 3, SINGAPORE 117543. E-mail: <u>phyjiwei@nus.edu.sg</u>

Supporting information

The precursor $[(Ph_3P)_2Ag(\mu-SC\{O\}Ph-S)_2In(SC\{O\}Ph)_2]$ (MW.= 1296, 0.039 mmol, 50 mg) was added to dodecanethiol (DT, C₁₂H₂₅SH, Aldrich, 1.93 mmol, 0.46 ml) and oleic acid (OA, C₁₇H₃₃COOH, Aldrich, 1.38 ml) at room temperature (the molar ratio of precursor : DT =1:50; the volume ratio of DT : OA =1:3) and the contents were heated at 200°C for 2 h with gentle stirring under nitrogen atmosphere. The solution was cooled to ~ 70°C and then an excess of ethanol was added, and a flocculent precipitate was formed. The solid was separated by centrifugation, washed with ethanol and dried. This can be easily re-dispersed in non-polar solvent like toluene and hexane.

X-Ray powder diffraction patterns were obtained using a D5005 Bruker X-ray diffractometer equipped with Cu K α radiation. The accelerating voltage and current were 40 kV and 40 mA respectively. Samples were prepared on glass slides. A concentrated toluene solution was slowly evaporated at room temperature on a glass slide to obtain a sample for analysis. Transmission Electron Microscopy (TEM) was performed on a Philips CM 10 microscope operating at 100 KV. High Resolution Transmission Electron Microscopy (HRTEM) images and electronic diffraction pattern were obtained from a JEOL JSM-3010 instrument. The samples for TEM were prepared by placing one drop of a dilute solution of sample in toluene onto a Cu grid (300 mesh). And then it was completely dried under vacuum. X-Ray photoelectron spectroscopy (XPS) studies X-ray photoelectron spectra were obtained from an ESCALAB MKII spectrometer (VG Scientific) using Al-K α radiation (1486.71eV). Spectral correction was based on the graphite C1s level at 284.5 eV. The vendor-supplied XPSPEAK version 4.1 was used to deconvolute the XPS data, using fixed half widths and fixed spin orbit splitting in first trials.

$$\left|\chi_{r}^{(3)}\right| = \sqrt{\left(\operatorname{Im}\chi^{(3)}\right)^{2} + \left(\operatorname{Re}\chi^{(3)}\right)^{2}}$$

Equ 1.third-order susceptibility equation

Figure S1. XRPD patterns of the product quenched at 70°C (top) and the simulated diffraction patterns from the JCPDS database (bottom).

Figure S2. Representative X-ray diffraction patterns of $AgInS_2$ NCs formed at 200 °C (top), the simulated diffraction patterns of orthorhombic phase $AgInS_2$ (JCPDS 00-025-1328) (middle) and the simulated diffraction patterns of tetragonal phase $AgInS_2$ (JCPDS 00-025-1330) (bottom).

Figure S3. Irradiance independence of the nonlinear absorption coefficient (β^{NC}) and nonlinear refractive index (n_2^{NC}) for the AgInS₂ nanoparticles measured at 780 nm.

Figure S4. (a) Open- and (b) closed-aperture Z-scan results of toluene and $AgInS_2$ nanocrystals performed at the same wavelength of 780 nm and irradiance of 60 GW/cm². The volume fraction of $AgInS_2$ nanocrystals in toluene is 1.81×10^{-4} .