SUPPORTING INFORMATION

Synthesis and Structural Characterization of Tris(2-seleno-1mesitylimidazolyl)hydroborato Complexes: A New Type of Strongly Electron Donating Tripodal Selenium Ligand

Mao Minoura, Victoria K. Landry, Jonathan G. Melnick, Keliang Pang, Luciano Marchiò and Gerard Parkin,*

Department of Chemistry, Columbia University, New York, New York 10027, USA.

Received $x x x x x x, 2006$.

EXPERIMENTAL SECTION

General Considerations

All manipulations were performed using Schlenk techniques under a nitrogen atmosphere unless otherwise specified. Solvents were purified and degassed by standard procedures. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on Bruker 300 DRX, Bruker 400 DRX, and Bruker Avance 500 DMX spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Chemical shifts are reported in ppm relative to $\mathrm{SiMe}_{4}(\delta=0)$ and were referenced internally with respect to the protio solvent impurity ($\delta 7.26$ for $\mathrm{CHCl}_{3} ; \delta 7.16$ for $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{H}, \delta 1.94$ for $\mathrm{CHD}_{2} \mathrm{CN}$). Coupling constants are given in hertz. Infrared spectra were recorded on Nicolet Avatar 370 DTGS spectrometer and are reported in cm^{-1}. Mass spectra were obtained on a Micromass Quadrupole-Time-of-Flight mass spectrometer using fast atom bombardment (FAB). 1-mesitylimidazole-2-selone was obtained using a method analogous to that for the methyl derivative (Guziec, L. J.; Guziec, F. S. Jr. J. Org. Chem. 1994, 59, 4691-4692) and " $\mathrm{Zn}(\mathrm{SPh})_{2}$ " was generated by reaction of $\mathrm{Me}_{2} \mathrm{Zn}$ with PhSH .

X-ray structure determinations

X-ray diffraction data were collected on a Bruker P4 diffractometer equipped with a SMART CCD detector; crystal data, data collection and refinement parameters are summarized in Table 2. The structures were solved using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^{2} with SHELXTL (Version 5.10; Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data; University of Göttingen, Göttingen, Federal Republic of Germany, 1981). Hydrogen atoms on carbon are placed in idealized positions and thermal ellipsoid plots are illustrated at the 20% probability level.

Synthesis of [Tse $\left.{ }^{\text {Mes }}\right] \mathrm{K}$

A mixture of 1-mesitylimidazole-2-selone ($3.00 \mathrm{~g}, 11.3 \mathrm{mmol}$) and $\mathrm{KBH}_{4}(0.24 \mathrm{~g}, 4.5$ mmol) in toluene (35 mL) was refluxed under N_{2} for 5 days, thereby depositing a light brown precipitate. The mixture was filtered and the precipitate was washed with pentane $(3 \times 15 \mathrm{~mL})$ and dried in vacuo to give $\left[T \mathrm{Ts}^{\mathrm{Mes}}\right] \mathrm{K}$ as a light brown powder (2.46 g, 77\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): 2.02$ [s, $18 \mathrm{H}, 6 \mathrm{Me}$ of 3 mesityl], 2.31 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], $6.74\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole], $6.96\left[\mathrm{~s}, 6 \mathrm{H}, 6 \mathrm{CH}\right.$ of 3 mesityl], $7.08\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-}\right.$ ${ }_{\mathrm{H}}=2,3 \mathrm{H}$ of 3 imidazole]. Mass spectrum: $m / z=804.7\{\mathrm{M}-\mathrm{K}\}^{-}$.

Synthesis of [Tse $\left.{ }^{\text {Mes }}\right] \mathbf{Z n I}$

A solution of $\left[T \mathrm{Ts}^{\mathrm{Mes}}\right] \mathrm{K}(50 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added over a period of 10 minutes to a suspension of $\mathrm{ZnI}_{2}(19 \mathrm{mg}, 0.060 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ resulting in the immediate deposition of a white precipitate. The mixture was stirred for 4 hours, allowed to settle for 15 minutes, and filtered. The volatile components were removed from the filtrate in vacuo to give $\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{ZnI}$ as a white powder ($32 \mathrm{mg}, 54 \%$). Crystals of composition $\left[\mathrm{Tse}{ }^{\mathrm{Mes}}\right] \mathrm{ZnI} \cdot 3 \mathrm{CH}_{3} \mathrm{CN}$ suitable for X -ray diffraction were obtained from $\mathrm{CH}_{3} \mathrm{CN} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.82$ [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.04 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], $2.14\left[\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}\right.$ of 3 mesityl], $6.06\left[\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole], $6.53[\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], 6.74 [$\mathrm{s}, 3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], $6.75\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole]. IR Data (KBr pellet, cm ${ }^{-1}$): 3132 (w), 2966 (m), 2916 (m), 2856 (w), 2423 (w), 2346 (w), 2291 (w), 1608 (w), 1560 (w), 1485 (s), 1458 (w), 1437 (m), 1418 (s), 1358 (vs), 1317 (m), 1291 (m), 1260 (m), 1189 (vs), 1171 (s), 1130 (w), 1096 (m), 1032 (m), 967 (w), 934 (w), 851 (m), $800(\mathrm{w}), 760(\mathrm{w}), 734(\mathrm{~s}), 684(\mathrm{~m}), 584(\mathrm{w}), 553(\mathrm{w}), 500(\mathrm{w})$. Mass spectrum: $\mathrm{m} / z=994.9$ $\{\mathrm{M}-1\}^{+}, 871.0\{\mathrm{M}-\mathrm{I}\}^{+}$.

Synthesis of [Tse $\left.{ }^{\text {Mes }}\right] \mathrm{CdI}$

A solution of $\left[T s e^{\mathrm{Mes}}\right] \mathrm{K}(50 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added over a period of 10 minutes to a suspension of $\mathrm{CdI}_{2}(22 \mathrm{mg}, 0.060 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ resulting in the immediate deposition of a white precipitate. The mixture was stirred for 3 hours, allowed to settle for 15 minutes and filtered. The volatile components were removed from the filtrate in vacuo to give [Tse $\left.{ }^{\text {Mes }}\right] \mathrm{CdI}$ as a white powder ($31 \mathrm{mg}, 50 \%$). Crystals of composition $\left[\mathrm{Tse}{ }^{\mathrm{Mes}}\right] \mathrm{CdI} \cdot 3 \mathrm{CH}_{3} \mathrm{CN}$ suitable for X-ray diffraction were obtained from $\mathrm{CH}_{3} \mathrm{CN}$. Anal. Calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{BN}_{6} \mathrm{Se}_{3} \mathrm{CdI} \cdot \mathrm{CH}_{3} \mathrm{CN}: \mathrm{C}, 42.1 \% ; \mathrm{H}, 4.0 \% ; \mathrm{N}, 9.0 \%$. Found: $\mathrm{C}, 42.1 \% ; \mathrm{H}, 3.8 \% ; 9.5 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.85[\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.04 [s, $9 \mathrm{H}, 3$ Me of 3 mesityl], 2.09 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], $6.08\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole], 6.53 [s, $3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], 6.68 [s, $3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], 6.77 [d, 3H, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2$, 3 H of 3 imidazole]. IR Data (KBr pellet, cm^{-1}): $3165(\mathrm{~m}), 3134(\mathrm{~m}), 3090(\mathrm{w})$, 2946 (w), 2915 (m), 2855 (w), 2733 (w), 2406 (w), 2364 (w), 2344 (w), 2290 (w), 2251 (m), 1607 (w), 1562 (w), 1485 (m), 1435 (m), 1416 (m), 1354 (s), 1316 (m), 1290 (w), 1186 (vs), 1130 (m), 1096 (w), 1033 (m), 965 (w), 933 (w), 888 (w), $850(\mathrm{~s}), 761$ (w), 732 (m), 682 (m), $682(w), 582(w), 555(w), 495(w), 464(w), 425(w)$. Mass spectrum: $m / z=1042.8\{M-$ $1\}^{+}, 916.8\{\mathrm{M}-\mathrm{I}\}^{+}$.

Synthesis of [Tse $\left.{ }^{\text {Mes }}\right] \mathbf{H g I}$

A solution of $\left[\mathrm{Tse}{ }^{\mathrm{Mes}}\right] \mathrm{K}(50 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added over 10 minutes to a suspension of $\mathrm{HgI}_{2}(27 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ resulting in the immediate deposition of a white precipitate. The mixture was stirred for 3 hours, allowed to settle for 15 minutes, and filtered. The volatile components were removed from the filtrate in vacuo to give $\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{HgI}$ as a white powder ($35 \mathrm{mg}, 52 \%$). Crystals of composition [$\left.\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{HgI} \cdot 3 \mathrm{CH}_{3} \mathrm{OH}$ suitable for X-ray diffraction were obtained from $\mathrm{CH}_{3} \mathrm{OH} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 1.84$ [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.04 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], $2.11\left[\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}\right.$ of 3 mesityl], $6.06\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole], 6.54 [$\mathrm{s}, 3 \mathrm{H}, 3$ CH of 3 mesityl], $6.68\left[\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{CH}\right.$ of 3 mesityl], $6.80\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole]. IR Data (KBr pellet, cm^{-1}): 3163 (w), 3126 (w), 3093 (w), 2924 (s), 2855 (m), 2404 (w), 2233 (w), 2066 (m), 1606 (m), 1484 (m), 1460 (), 1417 (m), 1376 (m), 1355 (m), 1315 (m), 1293 (w), 1188 (m), 1113 (w), 1033 (w), 966 (w), 934 (w), 848 (m), 783 (w), 765 $(\mathrm{w}), 747(\mathrm{~m}), 683(\mathrm{w}), 582(\mathrm{w})$. Mass spectrum: $m / z=1131.3\{\mathrm{M}\}^{+}, 1005.4\{\mathrm{M}-\mathrm{I}\}^{+}$.

Synthesis of [Tse $\left.{ }^{\text {Mes }}\right] \mathbf{C o I}$

A solution of $\left[T \mathrm{Ts}{ }^{\mathrm{Mes}}\right] \mathrm{K}(50 \mathrm{mg}, 0.059 \mathrm{mmol}) \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added over a period of 10 minutes to a suspension of $\mathrm{CoI}_{2}(19 \mathrm{mg}, 0.061 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ resulting in the immediate formation of a white precipitate in a green solution. The mixture was stirred for 4 hours and allowed to settle for 15 minutes. The mixture was filtered and the volatile components were removed in vacuo to give [$\left.\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{CoI}$ as a green powder
 were obtained from $\mathrm{CH}_{3} \mathrm{CN} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-0.92$ [br, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.15 [s, 9 H, 3 Me of 3 mesityl], 2.25 [s, $18 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 3.29 [br, 3 H of 3 imidazole], 4.05 [br, 3 H of 3 imidazole], 6.27 [s, $3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], 6.38 [s, $3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl] (assignments tentative due to the paramagnetic nature of the complex). IR Data (KBr pellet, cm^{-1}): 3169 (m), 3142 (m), 3098 (w), 3010 (w), 2972 (w), $2940(\mathrm{w}), 2915(\mathrm{~m}), 2855$ (w), 2407 (m), 2291 (w), 2254 (m), 1773 (w), 1753 (w), 1608 (m), 1562 (m), 1487 (s), 1437 (m), 1417 (s), 1359 (s), 1316 (m), 1291 (m), 1262 (m), 1187 (vs), 1135 (w), 1094 (w), 1032 (m), $966(\mathrm{w}), 934(\mathrm{~m}), 920(\mathrm{w}), 887(\mathrm{w}), 849(\mathrm{~s}), 801(\mathrm{w}), 783(\mathrm{w}), 756(\mathrm{~s}), 734(\mathrm{~m}), 686(\mathrm{~m})$, $585(\mathrm{~m}), 573(\mathrm{w}), 498(\mathrm{w}), 473(\mathrm{w}), 464(\mathrm{w}), 426(\mathrm{w})$. Mass spectrum: $m / z=990.9\{\mathrm{M}\}^{+}$, $864.0\{\mathrm{M}-\mathrm{I}\}^{+}$.

Molecular structure of [Tse $\left.{ }^{\text {Mes }}\right] \mathbf{C o I}$

Synthesis of [Tse $\left.{ }^{\text {Mes }}\right] \mathbf{Z n S P h}$

A mixture of [Tse $\left.{ }^{\mathrm{Mes}}\right] \mathrm{K}(20 \mathrm{mg}, 0.024 \mathrm{mmol})$ and " $\mathrm{Zn}(\mathrm{SPh})_{2}$ " $(20 \mathrm{mg}, 0.070 \mathrm{mmol})$ were treated with $\mathrm{CD}_{3} \mathrm{CN}(1 \mathrm{~mL})$, thereby demonstrating the rapid formation of $\left[T s e^{\mathrm{Mes}}\right] \mathrm{ZnSPh}$. The mixture was filtered and the solution was allowed to evaporate to deposit colorless crystals that were isolated and dried in vacuo ($6 \mathrm{mg}, 26 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}\right)$: 1.91 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 1.99 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.31 [s, 9 H, 3 Me of 3 mesityl], 6.77-6.90 [m, $3 \mathrm{H}, 1$ para and 2 meta H's of SPh], 7.00 [s, $3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], 7.01 [s, $3 \mathrm{H}, 3 \mathrm{CH}$ of 3 mesityl], 7.06 [d, $\mathrm{J}_{\mathrm{H}-\mathrm{H}}=7,2$ ortho $\mathrm{H}^{\prime} \mathrm{s}$ of SPh], 7.14 [d, $3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}$ of 3 imidazole], $7.35\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole]. Mass spectrum: $m / z=870.9\{\mathrm{M}-\mathrm{SPh}\}^{+}$. Anal. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{BN}_{6} \mathrm{SSe}_{3} \mathrm{Zn}: \mathrm{C}, 51.5 \% ; \mathrm{H}, 4.6 \%$; N, 8.6%. Found: C, 51.5%; H, 4.6%; 8.5\%.

Synthesis of $\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{Zn}$

A solution of $\left[T s e^{\mathrm{Mes}}\right] \mathrm{K}(15 \mathrm{mg}, 0.018 \mathrm{mmol})$ in $\mathrm{MeCN}(0.7 \mathrm{~mL})$ was treated with $\mathrm{ZnI}_{2}(2$ $\mathrm{mg}, 0.006 \mathrm{mmol})$. The mixture was shaken vigorously and filtered. The solution was allowed to evaporate slowly to deposit $\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{Zn}$ as colorless crystals after 2 days, which were isolated and dried in vacuo ($4 \mathrm{mg}, 38 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right.$ at $\left.70^{\circ} \mathrm{C}\right): 1.99$ [s, 36H, 12 o-Me of 6 mesityl], 2.08 [s, 18H, 6 p-Me of 6 mesityl], $6.26\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=1.4 \mathrm{~Hz}\right.$, 6 H of 6 imidazole), 6.72 [s, 12H of 6 aryl rings], 8.67 [br, 6 H of 6 imidazole]. Mass spectrum: $m / z=1674.0\{\mathrm{M}\}^{+}$. Anal. Calcd. for $\mathrm{C}_{72} \mathrm{H}_{80} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{Se}_{6} \mathrm{Zn}: \mathrm{C}, 51.7 \% ; \mathrm{H}, 4.8 \% ; \mathrm{N}$, 10.0%. Found: C, 51.5%; H, 4.6%; N, 9.8%.

Synthesis of $\left[T s e^{\mathrm{Mes}}\right] \operatorname{Re}(\mathrm{CO})_{3}$

A mixture of $\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{K}(30 \mathrm{mg}, 0.036 \mathrm{mmol})$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}(15 \mathrm{mg}, 0.037 \mathrm{mmol})$ were treated with benzene $(2 \mathrm{~mL})$ and heated at $60^{\circ} \mathrm{C}$ for 12 hours. The resulting pale yellow solution was filtered and allowed to form colorless crystals by slow evaporation, which were isolated and dried in vacuo ($4 \mathrm{mg}, 10 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): 1.90[\mathrm{~s}, 9 \mathrm{H}, 3$ Me of 3 mesityl], 2.10 [s, 9 H, 3 Me of 3 mesityl], 2.32 [s, $9 \mathrm{H}, 3$ Me of 3 mesityl], 7.01 [br $\mathrm{s}, 6 \mathrm{CH}$ of 3 mesityl], $7.09\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole], $7.32\left[\mathrm{~d}, 3 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of 3 imidazole]. IR (KBr pellet, cm^{-1}): 3166 (w), 3137 (w), 2917 (w), 2857 (m), 2431 (w), 2370 (w), 1999 (s, v v_{CO}), 1886 ($\mathrm{s}, \mathrm{v}_{\mathrm{CO}}$), 1608 (w), 1561 (w), 1485 (w), 1439 (w), 1357 (m), 1317 (m), 1293 (w), 1190 (s , 1127 (m), 1033 (m), 934 (w), 849 (w), 763 (w), 736 (m), 682 $(w), 630(w), 582(w), 509(w)$. Mass spectrum: $m / z=1075.9\{M\}^{+}$.

Molecular structure of $\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \operatorname{Re}(\mathrm{CO})_{3}$

Synthesis of $\left[\mathrm{Tm}^{\text {Mes }}\right] \operatorname{Re}(\mathrm{CO})_{3}$

A mixture of $\left[\mathrm{Tm}^{\mathrm{Mes}}\right] \mathrm{Li}(10 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}(4 \mathrm{mg}, 0.010 \mathrm{mmol})$ were treated with benzene (2 mL) and heated at $60^{\circ} \mathrm{C}$ for 12 hours. The resulting solution was filtered and allowed to form colorless crystals by slow evaporation ($4 \mathrm{mg}, 43 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}$): 1.95 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.08 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.32 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 6.99 [s, 3H of aryl ring], 7.01 [s, 3H of aryl ring], 7.02 [$\mathrm{d}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}$ of imidazole ring], $7.24\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,3 \mathrm{H}\right.$ of imidazole ring]. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.98[\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.14 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.31 [s, $9 \mathrm{H}, 3 \mathrm{Me}$
of 3 mesityl], 6.77 [d, $\mathrm{J}_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 3 \mathrm{H}$ of imidazole ring], 6.95 [$\mathrm{s}, 3 \mathrm{H}$ of aryl ring], 6.98 [s , 3 H of aryl ring], 7.08 [$\mathrm{d}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}, 3 \mathrm{H}$ of imidazole ring]. IR (KBr pellet, cm^{-1}): 3136 (w), 2919 (w), 2430 (w), 2365 (w), 2007 (s, v_{CO}), 1890 (s, v_{CO}), 1608 (w), 1559 (w), 1487 (w), 1439 (w), 1366 (m), 1323 (w), 1292 (w), 1192 (m), 1036 (w), 935 (w), 851 (w), 765 (w), 737 (w), $680(w), 636(w), 587(w), 504(w)$. Mass spectrum: $m / z=934.0\{M\}^{+}$.

Molecular structure of $\left[\mathrm{Tm}^{\mathrm{Mes}}\right] \operatorname{Re}(\mathrm{CO})_{3}$

Synthesis of $\left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{In}\right\}\left[\mathrm{InCl}_{4}\right]$

A mixture of $\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{K}(20 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathrm{InCl}_{3}(6 \mathrm{mg}, 0.027 \mathrm{mmol})$ was treated with $\mathrm{CDCl}_{3}(1 \mathrm{~mL})$ and monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, thereby demonstrating the immediate conversion to $\left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \operatorname{In}\right\}\left[\mathrm{InCl}_{4}\right]$. The mixture was filtered and the filtrate was allowed to evaporate slowly to deposit colorless crystals of $\left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{In}\right\}\left[\mathrm{InCl}_{4}\right]$ that were isolated and dried in vacuo $(7 \mathrm{mg}, 29 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 1.41[\mathrm{~s}, 9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 1.93 [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 2.31 [s, $18 \mathrm{H}, 6 \mathrm{Me}$ of 6 mesityl], 6.68 [s, $6 \mathrm{H}, 6$ CH of 6 mesityl], $6.84\left[\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,6 \mathrm{H}\right.$ of 6 imidazole], $6.96[\mathrm{~s}, 6 \mathrm{H}, 6 \mathrm{CH}$ of 6 mesityl], 7.07 [d, $6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,6 \mathrm{H}$ of 6 imidazole]. Anal. Calcd. for $\mathrm{C}_{72} \mathrm{H}_{80} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{Se}_{6} \mathrm{In}_{2} \mathrm{Cl}_{4}$: C, $43.7 \% ; \mathrm{H}, 4.1 \% ; \mathrm{N}, 8.5 \%$. Found: C, $43.6 \% ; \mathrm{H}, 4.1 \% ; 8.4 \%$. Mass spectrum: $m / z=$ $1724.2\{\mathrm{M}+1\}^{+}\left(\mathrm{M}=\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{In}\right)$.

Molecular structure of $\left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{In}\right\}^{+}$(anion not shown)

Synthesis of $\left\{\left[\mathrm{Tse}^{\text {Mes }}\right]_{2} \mathrm{Ga}\right\}\left[\mathrm{GaCl}_{4}\right]$

A mixture of $\left[T s e^{\text {Mes }}\right] \mathrm{K}(20 \mathrm{mg}, 0.024 \mathrm{mmol})$ and $\mathrm{GaCl}_{3}(4 \mathrm{mg}, 0.023 \mathrm{mmol})$ were combined in a J. Young NMR tube, dissolved in $\mathrm{CD}_{3} \mathrm{CN}(1 \mathrm{~mL})$, and shaken vigorously. The solution was filtered and allowed to evaporate slowly in a N_{2} atmosphere. After 1 day, large yellow crystals had formed that were isolated and dried in vacuo ($9 \mathrm{mg}, 40$ $\%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 1.44$ [s, $9 \mathrm{H}, 3 \mathrm{Me}$ of 3 mesityl], 1.89 [s, $18 \mathrm{H}, 6 \mathrm{Me}$ of 6 mesityl], $2.31\left[\mathrm{~s}, 18 \mathrm{H}, 6 \mathrm{Me}\right.$ of 6 mesityl], $6.71\left[\mathrm{~s}, 6 \mathrm{H}, 6 \mathrm{CH}\right.$ of 6 mesityl], $6.81\left[\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,6 \mathrm{H}\right.$ of 6 imidazole], 6.95 [s, $6 \mathrm{H}, 6 \mathrm{CH}$ of 6 mesityl], $7.08\left[\mathrm{~d}, 6 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2,6 \mathrm{H}\right.$ of 6 imidazole]. Anal. Calcd. for $\mathrm{C}_{72} \mathrm{H}_{80} \mathrm{~B}_{2} \mathrm{~N}_{12} \mathrm{Se}_{6} \mathrm{Ga}_{2} \mathrm{Cl}_{4}: \mathrm{C}, 45.7 \%$; $\mathrm{H}, 4.3 \%$; $\mathrm{N}, 8.9 \%$. Found: C, 45.9%; H , $4.0 \% ; 9.1 \%$. Mass spectrum: $m / z=1678.1\{\mathrm{M}+1\}^{+}\left(\mathrm{M}=\left[\mathrm{Tse}^{\text {Mes }}\right]_{2} \mathrm{Ga}\right)$.

Synthesis of [Tse $\left.{ }^{\mathrm{Mes}}\right]_{2} \mathrm{Cu}_{2}$

A solution of $\left[T s e^{\mathrm{Mes}}\right] \mathrm{K}(30 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{MeCN}(0.7 \mathrm{~mL})$ was treated with $\mathrm{CuCl}(4$ $\mathrm{mg}, 0.041 \mathrm{mmol})$. The solution was shaken vigorously and then filtered. The solution was allowed to evaporate slowly over a period of 2 days giving small colorless crystals of $\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{Cu}_{2}$ that were isolated and dried in vacuo ($3 \mathrm{mg}, 10 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): 1.85\left(\mathrm{~s}, 36 \mathrm{H}\right.$ of mesityl $\left.o-\mathrm{CH}_{3}\right), 2.36\left(\mathrm{~s}, 18 \mathrm{H}\right.$ of mesityl $\left.p-\mathrm{CH}_{3}\right), 7.02(\mathrm{~s}, 12 \mathrm{H}$ of mesityl), 7.10 (br doublet, 6 H of imidazole), 7.19 (br, 6H of imidazole). Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{BCuN}_{6} \mathrm{Se}_{3} \mathrm{Cu}: \mathrm{C}, 49.6 \% ; \mathrm{H}, 4.6 \%$; N, 9.7%. Found: C, $49.6 \% ; \mathrm{H}, 4.5 \% ; \mathrm{N}, 9.4 \%$.

Molecular structure of $\left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{Cu}\right\}_{2}$

Synthesis of $\left\{\left[\mathrm{Tm}^{\text {Mes }}\right] \mathrm{Cu}\right\}_{2}$

A solution of $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right]\left[\mathrm{BF}_{4}\right](0.019 \mathrm{~g}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ was added to a solution of $\mathrm{Tm}^{\mathrm{Mes}} \mathrm{Li}(0.04 \mathrm{~g}, 0.06 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$ resulting in the formation of a green precipitate and a colorless solution. The mixture was filtered and colorless crystals were obtained after several days. Anal. calcd. for $\mathrm{C}_{36} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{~S}_{3} \mathrm{BCu}: \mathrm{C}, 59.5 \%$; H , 5.5%; N, 11.6%. Found: C, 58.6%; H, 6.1%; N, 12.9%.

Molecular structure of $\left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \mathrm{Cu}\right\}_{2}$

Table 1. Crystal, intensity collection and refinement data.

	[Tse ${ }^{\text {Mes }}$]ZnI-3MeCN	[Tse ${ }^{\text {Mes }}$]CdI $\cdot 3 \mathrm{MeCN}$
lattice	Rhombohedral	Rhombohedral
formula	$\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{BIN}_{9} \mathrm{Se}_{3} \mathrm{Zn}$	$\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{BCdIN}_{9} \mathrm{Se}_{3}$
formula weight	1119.86	1166.89
space group	R-3c	R-3c
a / \AA	14.618(1)	14.6142(7)
b/ \AA	14.619(1)	14.6142(7)
c / \AA	77.980(1)	78.868(5)
$\alpha /{ }^{\circ}$	90.00	90.00
$\beta /{ }^{\circ}$	90.00	90.00
$\gamma /{ }^{\circ}$	120.00	120.00
V / \AA^{3}	14431(3)	14588(1)
Z	12	12
temperature (K)	243	243
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.546	1.594
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) , mm^{-1}	3.461	3.368
θ max, deg.	28.27	28.28
no. of data	3921	3951
no. of parameters	149	203
R_{1}	0.0406	0.0586
$w R_{2}$	0.1294	0.1266
GOF	1.022	1.006

	[$\mathrm{Tse}^{\text {Mes }}$] $\mathrm{HgI} \cdot 3 \mathrm{MeOH}$	[$\mathrm{Tse}^{\text {Mes }}$] $\mathrm{CoI} \cdot 3 \mathrm{MeCN}$
lattice	Rhombohedral	Rhombohedral
formula	$\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{BHgIN}_{6} \mathrm{O}_{3} \mathrm{Se}_{3}$	$\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{BCOIN}_{9} \mathrm{Se}_{3}$
formula weight	1228.05	1113.42
space group	R-3	R-3
a / \AA	14.823(1)	14.7744(8)
b/A	14.823(1)	14.7744(8)
c / \AA	37.136(5)	38.319(2)
$\alpha /{ }^{\circ}$	90.00	90.00
$\beta /{ }^{\circ}$	90.00	90.00
$\gamma /{ }^{\circ}$	120.00	120.00
V / \AA^{3}	7066.1(12)	7243.7(7)
Z	6	6
temperature (K)	243	243
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.732	1.531
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) , mm^{-1}	6.280	3.294
θ max, deg.	28.24	28.23
no. of data	3695	3783
no. of parameters	168	179
R_{1}	0.0512	0.0307
$w R_{2}$	0.1315	0.0793
GOF	1.003	1.016

	[$\left.\mathrm{Tse}^{\text {Mes }}\right] \mathrm{ZnSPh}$	$\left[\mathrm{Tse}^{\text {Mes }}\right]_{2} \mathrm{Zn} \cdot 5 \mathrm{MeCN}$
lattice	Triclinic	Monoclinic
formula	$\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{BN}_{6} \mathrm{SSe}_{3} \mathrm{Zn}$	$\mathrm{C}_{82} \mathrm{H}_{95} \mathrm{~B}_{2} \mathrm{~N}_{17} \mathrm{Se}_{6} \mathrm{Zn}$
formula weight	978.96	1879.50
space group	P-1	C2/c
a / \AA	9.3041(8)	20.640(3)
b/ \AA	21.886(2)	18.829(3)
c/ \AA	22.382(2)	24.172(4)
$\alpha /{ }^{\circ}$	73.753(2)	90
$\beta /^{\circ}$	85.956(2)	92.623(2)
$\gamma /{ }^{\circ}$	89.978(2)	90
V / \AA^{3}	4363.7(7)	9384(2)
Z	4	4
temperature (K)	243	243
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.490	1.330
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$), mm^{-1}	3.149	2.673
θ max, deg.	26.02	28.35
no. of data	17021	10934
no. of parameters	973	423
R_{1}	0.0791	0.0521
$w R_{2}{ }^{\text {a }}$	0.1839	0.0840
GOF	1.109	1.007

	$\begin{gathered} \left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{Ga}\right\}\left[\mathrm{GaCl}_{4}\right] \\ \cdot 2 \mathrm{MeCN} \end{gathered}$	$\begin{gathered} \left\{\left[\mathrm{Tse}^{\mathrm{Mes}}\right]_{2} \mathrm{In}\right\}\left[\mathrm{InCl}_{4}\right] \\ \cdot 2 \mathrm{MeCN} \\ \hline \end{gathered}$
lattice	Monoclinic	Monoclinic
formula	$\mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~B}_{2} \mathrm{Cl}_{4} \mathrm{Ga}_{2} \mathrm{~N}_{14} \mathrm{Se}_{6}$	$\mathrm{C}_{76} \mathrm{H}_{86} \mathrm{~B}_{2} \mathrm{Cl}_{4} \mathrm{In}_{2} \mathrm{~N}_{14} \mathrm{Se}_{6}$
formula weight	1972.21	2062.41
space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$
a / \AA	16.366(1)	16.464(1)
b/ \AA	22.280(2)	22.369(1)
c / \AA	24.541(2)	24.862(2)
$\alpha /{ }^{\circ}$	90	90
$\beta /^{\circ}$	109.217(1)	108.965(1)
$\gamma /{ }^{\circ}$	90	90
V / \AA^{3}	8450(1)	8658.9(9)
Z	4	4
temperature (K)	243	243
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.550	1.582
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$), mm^{-1}	3.398	3.227
θ max, deg.	28.33	28.32
no. of data	19616	19970
no. of parameters	976	976
R_{1}	0.0556	0.0425
$w R_{2}$	0.1222	0.0528
GOF	1.006	1.016

	$\left\{\left[\mathrm{Tse}^{\text {Mes }}\right] \mathrm{Cu}\right\}_{2} \cdot 6 \mathrm{MeCN}$	$\left\{\left[\mathrm{Tm}^{\text {Mes }}\right] \mathrm{Cu}\right\}_{2} \cdot 6 \mathrm{MeCN}$
lattice	Triclinic	Triclinic
formula	$\mathrm{C}_{84} \mathrm{H}_{98} \mathrm{~B}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{18} \mathrm{Se}_{6}$	$\mathrm{C}_{84} \mathrm{H}_{98} \mathrm{~B}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{18} \mathrm{~S}_{6}$
formula weight	1982.26	1700.86
space group	P-1	P-1
a / \AA	13.111(3)	12.835(2)
b / \AA	13.614(3)	13.514(2)
c / \AA	15.098(3)	15.052(2)
$\alpha /{ }^{\circ}$	69.291(4)	70.472(4)
$\beta /^{\circ}$	81.177(3)	83.347(3)
$\gamma /{ }^{\circ}$	63.195(4)	64.730(3)
V / \AA^{3}	2249.9(9)	2224.1(6)
Z	1	1
temperature (K)	243	243
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.463	1.270
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$), mm^{-1}	2.952	0.672
θ max, deg.	23.26	25.00
no. of data	5974	7417
no. of parameters	512	506
R_{1}	0.0508	0.0683
$w R_{2}{ }^{\text {a }}$	0.1098	0.1740
GOF	1.245	1.083

	$\left[\mathrm{Tse}^{\mathrm{Mes}}\right] \operatorname{Re}(\mathrm{CO})_{3} \cdot 5 \mathrm{C}_{6} \mathrm{H}_{6}$	$\left[\mathrm{Tm}^{\mathrm{Mes}}\right] \operatorname{Re}(\mathrm{CO})_{3} \cdot 4 \mathrm{C}_{6} \mathrm{H}_{6}$
lattice	Monoclinic	Monoclinic
formula	$\mathrm{C}_{69} \mathrm{H}_{70} \mathrm{BN}_{6} \mathrm{O}_{3} \mathrm{ReSe}_{3}$	$\mathrm{C}_{63} \mathrm{H}_{64} \mathrm{BN}_{6} \mathrm{O}_{3} \mathrm{ReS}_{3}$
formula weight	1465.20	1246.39
space group	P2/ $/ \mathrm{c}$	$P 2_{1} / n$
a / \AA	10.3336(7)	10.1948(9)
b / \AA	21.623(2)	21.590(2)
c/ \AA	30.390(2)	27.969(2)
$\alpha /{ }^{\circ}$	90	90
$\beta /^{\circ}$	92.894(2)	96.845(2)
$\gamma /{ }^{\circ}$	90	90
V / \AA^{3}	6781.7(9)	6112.2(9)
Z	4	4
temperature (K)	243	243
radiation (λ, \AA)	0.71073	0.71073
ρ (calcd.), $\mathrm{g} \mathrm{cm}^{-3}$	1.435	1.354
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$), mm^{-1}	3.450	2.139
θ max, deg.	28.30	28.32
no. of data	15488	14302
no. of parameters	753	687
R_{1}	0.0500	0.0705
$w R_{2}$	0.1164	0.1183
GOF	1.027	1.009

