Synthesis and Characterization of a Trigonal Bipyramidal Supramolecular Cage Based Upon Rhodium and Platinum Metal Centers

Jered C. Garrison, Matthew J. Panzner, Paul D. Custer, D. Venkat Reddy, Peter L. Rinaldi, Claire A. Tessier and Wiley J. Youngs

Department of Chemistry, The University of Akron, Akron, Ohio 44325, USA.

Supporting Information

Table of Contents

X-ray Structure Determination Details	General Considerations	
Experimental	X-ray Structure Determination Details	
 ¹H NMR Spectra of 4	Experimental	
 ¹³C NMR Spectra of 4	¹ H NMR Spectra of 4	
³¹ P NMR Spectra of 4 ¹⁹⁵ Pt NMR Spectra of 4 Thermal Ellipsoid Plots of 2	¹³ C NMR Spectra of 4	
¹⁹⁵ Pt NMR Spectra of 4	³¹ P NMR Spectra of 4	
Thermal Ellipsoid Plots of 2	¹⁹⁵ Pt NMR Spectra of 4	
Thermal Ellipsoid Plots of Cage Portion of 4	Thermal Ellipsoid Plots of 2	
	Thermal Ellipsoid Plots of Cage Portion of 4	

General Considerations

All manipulations dealing with lithium reagents were carried out under an N₂ atmosphere. 1,4,7-trimethyl-1,4,7-triazacyclononane (Me₃tacn) was synthesized according to literature procedures.¹⁻³ Dry THF was obtained from a PureSolvTM solvent purification system. Other solvents were used as received. ¹H, ¹³C, ³¹P and ¹⁹⁵Pt NMR data were recorded on Varian Inova 400 or Unity Inova 750 MHz instruments. The ¹H spectra were referenced to the residual proton of the deuterated solvent. The ¹³C spectra were referenced to the ¹³C signals of the deuterated solvents. The ³¹P spectra were referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of 85% H₃PO₄. The ¹⁹⁵Pt spectrum was referenced to an external standard of K₂PtCl₄. Mass spectrometer equipped with ESI. The infrared spectrum was collected as a KBr pellet using a Bomem B-100 Infrared spectrometer.

X-ray Structure Determination Details

Crystals of **2** and **4** were coated in paratone oil and mounted on a CryoLoopTM and placed on the goniometer head under a stream of nitrogen cooled to 100K. The data was collected on a Bruker APEX CCD diffractometer with graphite-monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å). The unit cell was determined by using reflections from three different orientations. The data was integrated using SAINT.⁴ An empirical absorption correction and other corrections were applied to the data using multi-scan SADABS.⁴ Structure solution, refinement, and modeling were accomplished by using the Bruker SHELXTL package.^{4,5} The structure was determined by full-matrix least-squares refinement of F^2 and the selection of the appropriate atoms from the generated difference map. Hydrogen atom positions were calculated and U_{iso}(H) values were fixed according to a riding model.

¹ McAuley, A.; Norman, P. R.; Olubuyide, O. *Inorg. Chem.* **1984**, 1938-1943.

² Hay, R. W.; Norman, P. R. J. Chem. Soc., Dalton 1979 1441-1445.

³ Wang, L.; Wang, C.; Bau, R.; Flood, T. C. Organometallics **1996**, *15*, 491-498.

⁴ Bruker (1997). SMART (Version 5.625), SAINT (Version 6.22) and SHELXTL (Version 6.10)

⁵ Sheldrick, G. M. (1997). SHELX-97. University of Göttingen, Germany

Supplementary Material (ESI) for Chemical Communications

This journal is (c) The Royal Society of Chemistry 2006

(Me₃tacn)Rh(CCPy)₃ (2). (Me₃tacn)RhCl₃ (0.761 g, 2.00 mmol) was placed into a Schlenk flask and heated to 50°C in vacuum for one hour. 4-Ethynyl-pyridine (0.722 g, 7.00 mmol) was added to a Schlenk flask and dried under vacuum for one hour at RT. The flask containing the 4ethynyl-pyridine was filled with ~80 mL of dry THF. The flask containing the alkyne was cooled to -78°C and 4.2 mL of a 1.7 M solution of tert-butyl lithium was added to the flask under nitrogen. The flask containing the (Me₃tacn)RhCl₃ was charged with 40 mL of THF and cooled down to -78°C. The flask containing the acetylide was transferred *via* canula to the flask containing the (Me₃tacn)RhCl₃. The mixture was kept at -78°C for 4 h and then allowed to warm up to RT. The flask was stirred for 36 h. The volatile components were removed from the mixture by distillation under reduced pressure. The solid was washed with water and quickly filtered to obtain a light brown solid. Yield: 0.65 g, 1.11 mmol, 56%; mp 159-161 °C dec. Crystals suitable for single crystal x-ray diffraction were grown from a concentrated solution of dimethyl sulfoxide. ¹H NMR (400 MHz, CD₃OD) δ 3.04-3.15 (m, 6H, N-C*H*H-C*H*H-N), 3.19 (s, 9H, CH₃), 3.26-3.37 (m, 6H, N-CH*H*-CH*H*-N), 7.32 (dd, 6H, ${}^{3}J$ = 4.8 Hz, ${}^{4}J$ = 1.5 Hz, m-pyr), 8.32 (dd, 6H, ${}^{3}J$ = 4.8 Hz, ${}^{4}J$ = 1.5 Hz, o-pyr); ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CD₃OD) δ 52.9 (CH₃), 60.6 (CH₂), 100.2 (d, ${}^{2}J_{C\beta-Rh} = 9.2$ Hz, C_{β}), 120.2 (d, ${}^{1}J_{C\alpha-Rh} = 48.0$ Hz, C_{α}), 127.7, 139.5, 149.6 (aromatic); IR (KBr): v(CC) 2103 (s) cm⁻¹; ES-MS (DMSO) cacld for [M]Na⁺: m/z 603.2, found 603.2; Anal. Calcd for C₃₀H₃₃N₆Rh: C, 62.05; H, 5.73; N, 14.48. Found: C, 61.45; H, 5.61; N, 14.10.

(DCPE)Pt(NO₃)₂ (3). (DCPE)PtCl₂ (1.37 g, 2.0 mmol) was added to 1 L Erlenmeyer flask with a stirbar. CH₂Cl₂ (400 mL) was added to the flask and the solution stirred rapidly. AgNO₃ (0.68 g, 4 mmol) was dissolved in water (~5 mL) and added to the flask containing the platinum complex. The complex was stirred for 5 minutes while a white precipitate formed. To this mixture was added 400 mL of acetone. The mixture was allowed to stir for an additional 30 min. The solution was filtered with the aid of Celite[®] and evaporated under reduced pressure to dryness. The white solid was then taken up in CH₂Cl₂ and allowed to slowly evaporate. The complex was isolated as white crystals. Yield: 1.30 g, 1.87 mmol, 93%; mp 192-194 °C dec. ¹H NMR (400 MHz, CD₂Cl₂) δ 1.20-1.58 (m, 20H), 1.68-1.96 (m, 20H), 2.02-2.40 (m, 8H); ¹³C {¹H} NMR (100 MHz, CD₂Cl₂) δ 21.7 (¹J_{C-P} = 3.8 Hz), 22.1 (¹J_{C-P} = 3.8 Hz), 26.2, 27.0, 27.1 (¹J_{C-P} = 16.7 Hz), 27.3, 28.7, 28.7, 29.0, 34.6, 34.9; ³¹P {¹H} NMR (161.8 MHz, CD₂Cl₂, ref. 85% H₃PO₄) δ 58.3 (¹J_{P-Pt} = 3839 Hz); ES-MS (CH₂Cl₂) cacld for [M-NO₃]⁺: *m/z* 679.3, found 679.2; Anal. Calcd for C₂₆H₄₈N₂P₂PtO₆: C, 42.09; H, 6.53; N, 3.78. Found: C, 42.10; H, 6.55; N, 3.81.

Trigonal Bipyramidal Cage (4). Compound **2** (0.040 g, 0.069 mmol) was dissolved in 5 mL of CH₂Cl₂. Compound **3** (0.077 g, 0.104 mmol) was dissolved in 5 mL of CH₂Cl₂. The combination of the solutions of **2** and **3** formed a thick orange oil upon mixing. The CH₂Cl₂ was decanted off and the oily liquid was washed with 2X5 mL portions of CH₂Cl₂. The oil was then dissolved in methanol and allowed to slowly crystallize by slow evaporation yielding a yellow crystalline solid. Yield: 0.098 g, 0.029 mmol, 85%. Crystals suitable for single crystal x-ray diffraction were grown from a solution of acetonitrile and toluene. ¹H NMR (749.8 MHz, CD₃OD) δ 1.17 (m, 12H), 1.39 (m, 38H), 1.66 (m, 12H), 1.77 (m, 12H), 1.90 (m, 36H), 2.07 (m, 12H), 2.13-2.36 (m, 25H), 3.01-3.25 (m, 39H), 7.42 (d, 12H, ³J = 5.9 Hz, m-pyr), 8.60 (dd, 12H, ³J = 7.0 Hz, ³J = 2.4 Hz, o-pyr); ¹³C{¹H} NMR (188.5 MHz, CD₃OD) δ 22.6, 22.8, 26.9, 27.7 (¹J_{C-P} = 11.9 Hz), 27.9 (¹J_{C-P} = 12.9 Hz), 29.6, 30.1, 35.5, 35.6, 53.2, 60.8, 100.8 (d, ²J_{Cβ-Rh} = 9.0

Hz, C_β), 131.0, 131.3 (d, ${}^{1}J_{C\alpha-Rh}$ = 47.5 Hz, C_α), 142.7, 150.6; ${}^{31}P{}^{1}H$ } NMR (161.8 MHz, CD₃OD, ref. 85% H₃PO₄) δ 59.0 (${}^{1}J_{P-Pt}$ = 3113 Hz); ${}^{195}Pt{}^{1}H$ } NMR (85.549 MHz, CD₃OD, ref. K₂PtCl₄) δ -1674.281 (${}^{1}J_{P-Pt}$ = 3134 Hz); IR (KBr): v(CC) 2103 (s) cm⁻¹; ES-MS (CD₃OD) cacld for [M-6NO₃]⁺⁶, [M-5NO₃]⁺⁵, [M-4NO₃]⁺⁴, [M-3NO₃]⁺³, [M-2NO₃]⁺²,: *m/z* 502.0, 614.8, 784.1, 1066.1, 1630.1, found 502.4, 615.7, 784.6, 1066.2, 1630.5; Anal. Calcd for C₁₃₈H₂₁₀N₁₈Rh₂P₆Pt₃O₁₈: C, 45.95; H, 6.25; N, 7.45. Found: C, 45.50; H, 6.41; N, 7.09; an unknown amount of solvent occupies the void spaces of the crystalline material used for this analysis.

¹H Spectra of **4**

¹³C Spectra of 4

X-ray Structure of 2 Asymmetric Unit

X-ray Structure of 4 Asymmetric Unit

X-ray Structure of 4 Trigonal Bipyramidal Cage

