Electronic Supplementary Information

of the manuscript:

Shape persistent macrocycle with a self complementary recognition pattern based on diacetylene linked alternating hexylbenzene- and perfluorobenzene- rings

Lijin Shu^{*a*} and Marcel Mayor^{**a,b*}

Synthetic protocols and analytical data

- ¹⁰ *General:* All reagents were purchased from Aldrich or ABCR and were used without further purification. Dry solvents were obtained by standard literature procedures, in particular THF and toluene by distillation from a Na/benzophenone slurry and CH2Cl2 was distilled over CaH. All reactions were carried out under N2
- ¹⁵ protection gas atmosphere. 1H-NMR and 13C-NMR spectra were recorded on a Bruker Ultra Shield 300 MHz and 500 MHz, the J values are given in Hz. MALDI-TOF MS spectra were recorded on a PerSeptive Biosystems Voyager –DE PRO time-of-flight mass spectrometer. EI-MS were recorded on a Finnigan MAT 95Q mass
- ²⁰ spectrometer. Thin layer chromatography (TLC) was carried out on Merck silica gel 60 F254 plates and column chromatography (CC) using Merck silica gel 60 (0.040-0.063 mm). Elemental analyses were recorded using a ThermoQuest FlashEA 1112 N/Protein Analyzer.

25

Tetrafluoroisophthalaldehyde (2) was synthesized according to a reported protocol.¹:

To 2,3,4,6-Tetrafluoroisophthalonitrile (10.89 g, 54.43 mMol) in argon bubbled toluene (500 mL) at $_{30}$ 0°C a 1.5 M diisopropylaluminiumhydride toluene

2 solution (100 mL, 150 mMol) was added. After 2.5 h at room temperature the reaction mixture was cooled to 0°C. EtOAc (20 mL) and 2N HCl (300 mL) was added. The organic layer was separated and the aqueous layer extracted with CH₂Cl₂. ³⁵ The combined organic layers were adsorbed on silica (30 g). Column chromatography (silica, toluene) yielded in **2** (5.34 g, 25.91 mMol, 48 %) as beige solid. ¹H-NMR(CDCl₃): 10.15 (*s*, 2H). ¹³C-NMR(CDCl₃): 111.77 (*m*); 137.42 (*d*,*t*,*d* J_d = 255); 181.48 ⁴⁰ (*d* J = 6). EI-MS: 207 (9); 206 (100, M^{+}); 205 (61); 177 (55); 149 Br Br Br Br 45 1,3-Bis-(2',2'-dibromoethenyl)-2,4,5,6-tetrafluorobenzene (**3**): To a suspension of CBr₄ (50 g, 150 mMol) and

F is the provided **3** (17.1 g, 33.03 mMol, 92%) as a white solid. ¹H-NMR (250 MHz, CDCl₃) δ 7.22 (s, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 7.22 (s, 2H). ¹³C-NMR (MHz, CDCl₃) δ 99.8, 111.6 (m), 124.0, 137.8 (d,m J_d = 244.2), 148.1 (d,m J_d = 255.2), 150.7 (d,m J_d = 251.3). EI-MS m/z 517.4 [M⁺]. Anal. ⁶⁰ calcd. for C₁₀H₂Br₄F₄ (517.7): C 23.20, H 0.39; found: C 23.29, H 0.62.

Br 1,3-Bis-bromoethynyl-2,4,5,6-tetrafluorobenzene (4):

⁶⁵ To a solution of **3** (11.0 g, 21 mMol) and benzyltriethylammoniumchloride (0.5 g, 2.2 mMol) in THF (100 mL), a solution of KOH (60 g, 1.07 mol) in water (60 mL) was

added. The mixture was stirred for 2 h at RT. The organic phase ⁷⁰ was separated and washed with saturated aqueous NaHCO₃. Purification by CC (silica, hexane) afforded **4** (7.0 g, 19.7 mMol, 94%) as a white solid. ¹³C-NMR (75 MHz, CDCl₃) δ 62.9 (q J =3.5 Hz), 65.1 (d J = 3.75 Hz), 100.0 ($t, m J_t =$ 22.2), 137.5 ($d, m J_d =$ 252.0), 152.6 ($d, m J_d =$ 259.9), 160.0 ($d, m J_d =$ 257.7). EI-MS ⁷⁵ m/z 355.9 [M⁺]. Anal. calcd. for C₁₀Br₂F₄ (355.9): C 33.75; found: C 33.59.

 $C_{16}H_{13}$ 2,6-Dibromo-4-hexyl-phenylamine (5):

5

To a 1000 mL flask in an ice/water bath 4-⁵⁰ hexylanniline (25 g, 141 mMol) and DMF (200 mL) were added. A solution of N-bromosuccinimide (62.5 g, 0.35 mol) in DMF (200 mL) was added dropwise within 1 hour to the stirred hexylaniline

solution. The reaction mixture was stirred for another 3 h. After solution. The reaction mixture was stirred for another 3 h. After (silica, hexane) afforded **5** (40 g, 119 mMol, 85%) as a red crystal. ¹H-NMR (250 MHz, CDCl₃) δ 0.92 (*t*, 3H), 1.31 (*br*, 6H), 1.55 (*m*, 2H), 2.48 (*t*, 2H), 4.42 (*s*, 2H), 7.22 (*s*, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 14.6, 23.0, 29.2, 31.8, 32.1, 34.8, 109.2,

^{(57); 99 (35).}

^a Forschungszentrum Karlsruhe GmbH, Institute for Nanotechnology, Postfach 3640, D-76021 Karlsruhe, Germany. Fax: +49 7247 82-5685; Tel: +49 7247 82-6392; E-mail: marcel.mayor@int.fzk.de

^b University of Basel, Department of Chemistry, St. Johannsring 19, CH-4056 Basel, Switzerland. Fax: +41 61 267 1016; Tel: +41 61 267 1006; E-mail: marcel.mayor@unibas.ch

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

⁹⁰ 131.9, 135.0, 140.1. EI-MS *m*/*z* 334.8 [M⁺]. Anal. calcd. for $C_{12}H_{17}Br_2N$ (335.08): C 43.01, H 5.11; found: C 43.33, H 4.88.

6

1,3-Dibromo-5-hexyl-benzene (6): A 1000 mL flask equipped with a magnetic stirrer, a

>Br 95 reflux condenser and an oil bath was charged with 5 (40 g, 119 mMol) in dry ethanol (800 mL) and concentrated H₂SO₄ (50 mL). The reaction mixture

was stirred and heated to 75°C and NaNO₂ (25 g, 362 mMol) was added in small portions. After completed
addition, the reaction mixture was stirred for another 2 h at 75°C. Subsequently the reaction mixture was cooled in an ice bath and ice-water (300 mL) was added. Extraction with CH₂Cl₂, drying over MgSO₄ and evaporation of the solvents provided the crude product. CC (silica, hexane) yielded **6** (26 g, 81.2 mMol, 68%) as
colorless oil. ¹H-NMR (250 MHz, CDCl₃) δ 0.92 (*t*, 3H), 1.30 (*s*, 6H), 1.60 (*m*, 2H), 2.56 (*t*, 2H), 7.28 (*d*, 2H), 7.50 (*t*, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 14.6, 23.0, 29.3, 31.5, 32.1, 35.8, 123.2, 130.7, 131.7, 147.2. EI-MS *m/z* 319.8 [M⁺]. Anal. calcd. for C₁₂H₁₆Br₂ (320.06): C 45.03, H 5.04; found: C 45.33, H 5.11.

1-Hexyl-3,5-bis-[2',2'-(triisopropyl-silanyl)-ethynyl]-benzene (7):

To a 500 mL flask equipped with a reflux condenser 6 (8 g, 25 mMol), ¹¹⁵ triisopropylacetylene (15.5 g, 85 mMol), dry triethylamine (150 mL),

Pd(PPh₃)₄ (0.8 g, 0.67 mMol) and CuI (0.26 g, 1.3 mMol) were added. The suspension was degassed with N₂ and stirred for 18 h at 80°C under a N₂ atmosphere. After removal of the solvent, CC ¹²⁰ (silica, hexane) provided **7** (11.2 g, 21.4 mMol, 86%) as a colorless oil. ¹H-NMR (250 MHz, CDCl₃) δ 0.92 (*t*, 3H), 1.16 (*s*, 42H), 1.32 (*br*, 6H), 1.60 (*m*,2H), 2.60 (*t*, 2H), 7.25 (*d*, 2H), 7.41 (*t*, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 11.7, 14.5, 19.0, 23.0, 29.3, 31.6, 32.0, 35.8, 91.0, 106.8, 123.9, 132.4, 133.0, 143.4. EI-¹²⁵ MS *m/z* 522.2 [M⁺-H]. Anal. calcd. for C₃₄H₅₈Si₂ (523.00): C 78.08, H 11.18; found: C 77.84, H 10.97.

8 66H13

TBAF (0.15 g) in THF (15 ml) was dropped to the stirred solution of 7 (15 g, 28.7 mMol) in wet THF (150 mL) (containing 1% water) over 30 minutes. After stirring
 for 4 h at RT, removal of the solvent

followed by CC (silica, hexane) provided **8** (2.9 g, 7.9 mMol, 28%) and **9** (1.09 g, 5.2 mMol,18%) both as colorless oils. The remained starting compound **7** was

¹⁴⁰ recovered. *3-Ethynyl-5-hexyl-phenylethynyl)-triisopropyl-silane*(8): ¹H-NMR (250 MHz, CDCl₃) δ 0.93 (*t*, 3H), 1.16 (*s*, 21H), 1.32 (*br*, 8H), 1.63 (*m*, 2H), 2.60 (*t*, 2H), 3.08 (*s*, 1H), 7.30 (*m*, 2H), 7.47 (*t*, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 11.7, 14.5, 19.1, 23.1, 29.3, 31.5, 32.1, 35.9, 77.6, 83.5, 91.3, 106.8, 122.5, 124.1, 145 132.4, 132.7, 133.4, 143.6; EI-MS *m/z* 366.1 [M⁺]. Anal. calcd. for C₂₅H₃₈Si (366.6): C 81.89, H 10.45; found: C 81.90, H 10.21; *1,3-diethynyl-5-hexyl-benzene* (9): ¹H-NMR (250 MHz, CDCl₃) δ 0.91 (*t*, 3H), 1.32 (*br*, 6H), 1.58 (*m*, 2H), 2.58 (*t*, 2H), 3.08 (*s*, 1H), 7.31 (*s*, 2H), 7.47 (*t*, 1H); ¹³C-NMR (75 MHz, CDCl₃) δ 14.5, 23.1, 29.2, 31.5, 32.0, 35.9, 77.8, 83.3, 122.6, 132.9, 133.4, 143.6; EI-MS *m/z* 210.1 [M⁺]. Anal. calcd. for C₁₆H₁₈ (210.3): C 91.37, H 8.63; found: C 91.11, H 8.48.

C₆H₁₃

11

1-(2',3',4',6'-tetrafluoro-5'-bromo iss ethynylphenyl)-4-(3''-hexyl-5''-triiso propylsilaneethynylphenyl)-buta-1,3-diyne (10):

A 250 mL flask was charged with **4** (3.56 g, 10 mMol), Pd₂(dba)₃·CHCl₃ (0.103 g, ¹⁶⁰ 0.1 mMol) and CuI (0.05 g, 0.26 mMol) in dry toluene (120 mL) and dry diisopropylethylamine (12 mL). The solution was degassed by bubbling with N₂. A solution of **8** (0.80 g, 2.2 mMol) in

¹⁶⁵ dry toluene was added dropwise within 2 h at RT. The reaction mixture was stirred for another 2 h at RT. Removal of the solvents under reduced pressure and CC (silica, hexane) afforded **10** (0.90 g, 1.4 mMol, 64%) as a yellow solid. ¹H-NMR (250 MHz, CDCl₃) δ 0.90 (*t*, 3H), 1.14 (*s*, 21H), 1.32 (*br*, 6H), 1.61 ¹⁷⁰ (*m*,2H), 2.58 (*t*, 2H), 7.32 (*t*, 2H), 7.50 (*t*, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 11.2, 14.1, 18.6, 22.6, 28.9, 31.0, 31.6, 35.4, 62.6, 64.8, 65.1, 73.0, 84.2, 84.6 (*q*), 91.6, 99.5 (*t*, *m* J_t = 32.6), 105.8, 120.8, 124.0, 132.3, 133.4, 133.5, 137.3 (*d*, *m* J_d = 251.1), 143.6, 152.7 (*d*, *m* J_d = 260.6), 160.3 (*d*, *m* J_d = 258.6). MALDI-¹⁷⁵ ToF-MS *m*/z 641.3 [M+H]⁺ calcd. for C₃₅H₃₇BrF₄Si (640.18).

> Br 1-(2',3',4',6'-tetrafluoro-5'-bromoethynylphenyl)-4-(3''-hexyl-5''-ethynylphenyl)-buta-180 1,3-diyne (11):

A solution of TBAF (0.4 g, 1.53 mMol) in THF (15 ml) (pH = 7.5, adjusted with AcOH) was added dropwise to a solution of **10** (0.7 g, 1.1 mmol) in wet THF (50 mL) ¹⁸⁵ (containing 1% water) over 30 minutes. The reaction mixture was stirred for e h at RT before the solvents were removed under reduced pressure. CC (silica, hexane) gave

11 (0.03 g, 0.06 mMol, 5.6%) as colorless oil. ¹H-NMR (250 ¹⁹⁰ MHz, CDCl₃) δ 0.90 (*t*, 3H), 1.32 (*br*, 6H), 1.63 (*m*,2H), 2.59 (*t*, 2H), 3.10 (*s*, 1H), 7.35 (*s*, 2H), 7.49 (*t*, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 14.1, 22.5, 28.8, 31.0, 31.6, 35.4, 62.7, 64.8, 65.3, 73.0, 77.9, 82.5, 83.9, 84.5, 99.7, 121.0, 122.6, 132.9, 133.4, 133.6, 137.3 (*d*, *m* J_d = 253.3), 143.7, 152.4 (*d*, *m* J_d = 259.4), 160.0 (*d*, *m* ¹⁹⁵ J_d = 256.4). MALDI-ToF-MS *m*/*z* 484.3 [M]⁺ calcd. for C₂₆H₁₇BrF₄ (484.0).

1,3-di-(4'-(3''hexyl-5''-200 triisopropylsilaneethynylphenyl)-3 buta-1',3'-diynyl)-2,4,5,6-tetrafluorobenzene 205 (12):

A 500 mL flask was charged with

4 (3.0 g, 8.4 mMol), Pd₂(dba)₃·CHCl₃ (0.20 g, 0.19 mMol) and CuI (0.26 g, 1.36 mMol) in dry toluene (150 mL) and dry ²¹⁰ diisopropylethylamine (15 mL). The solution was degassed by bubbling with N₂. A solution of 8 (6.2 g, 16.9 mMol) in dry toluene was added dropwise and the reaction mixture was stirred for 3 h at RT under N₂. Removal of the solvents under reduced pressure and CC (silica, hexane) provided 12 (5.2 g, 5.6 mMol, ²¹⁵ 67%) as a light brown solid. ¹H-NMR (250 MHz, CDCl₃) δ 0.93 (*t*, 6H), 1.16 (*s*, 42H), 1.32 (*br*, 12H), 1.63 (*m*,4H), 2.60 (*t*, 4H), 7.34 (*t*, 4H), 7.52 (*t*, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 11.3, 14.1, 18.6, 22.6, 28.9, 31.0, 31.6, 35.4, 65.1, 73.0, 84.3, 84.7 (*d*).

91.6, 99.5 (*t*,*m* J_t = 21.9), 105.8, 120.8, 124.0, 132.3, 133.4, 220 133.5, 137.3 (*d*,*m* J_d = 247.6), 143.6, 152.6 (*d*,*m* J_d = 261.1), 160.3 (*d*,*m* J_d = 261.2). EI-MS *m*/*z* 926.0 [M-H]⁺. Anal. calcd. for C₆₀H₇₄F₄Si₂ (927.39): C 77.71, H 8.04; found: C 77.46, H 7.70.

1,3-di-(4'-(3'' phenyl)buta-1',3' diynyl)-2,4,5,6 tetrafluorobenzene (13): 230 TBAF (0.5 g) in

THF (50 mL) was

added dropwise to the stirred solution of **12** (2.0 g, 2.2 mMol) in wet THF (150 mL) (containing 1% water) over 30 minutes. After stirring for 4 h at RT, the solvents were removed under reduced ²³⁵ pressure and CC (silica, hexane) of the residue gave **13** (1.05 g, 1,7 mMol, 79%) as brown solid. ¹H-NMR (250 MHz, CDCl₃) δ 0.91 (*t*, 6H), 1.33 (*br*, 12H), 1.61 (*m*,4H), 2.60 (*t*, 4H), 3.10 (*s*, 2H), 7.36 (*t*, 4H), 7.50 (*t*, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 14.5, 23.0, 29.2, 31.4, 32.0, 35.8, 65.6(*d*), 73.5, 78.3, 82.8, 84.4, 85.0, 99.5 (*t*, *m* J_t = 22.1), 121.4, 123.0, 133.3, 133.8, 134.0, 137.8 (*d*, *m* J_d = 252.1), 144.1, 152.6 (*d*, *m* J_d = 261.9), 160.2 (*d*, *m* J_d = 261.1). EI-MS *m*/z 614.0 [M⁺]. Anal. calcd. for C₄₂H₃₄F₄ (614.71); C 82.06, H 5.57; found: C 81.86, H 5.69.

245 1,3-di-(4'-(2'',3'',4'',6''tetrafluoro-5''-bromoethynylphenyl)buta-1',3'diynyl)-5-hexylbenzene (14):

A 100 mL flask was charged with 4 (1.0 g, 2.8 mMol), $Pd_2(dba)_3$ ·CHCl₃ (0.02 g, 0.019 mMol) and

CuI (0.02 g, 0.1 mMol) in dry toluene (20 mL) and dry ²⁵⁵ diisopropylethylamine (1 mL). The solution was degassed by bubbling with N₂. A solution of **9** (0.07 g, 0.33 mMol) in dry toluene (2 mL) was added dropwise and the reaction mixture was stirred for 3 h at RT under N₂. Removal of the solvents under reduced pressure and CC (silica, hexane) afforded **14** (0.09 g, ²⁶⁰ 0.12 mMol, 36%) as a brown solid. ¹H-NMR (250 MHz, CDCl₃) δ 0.91 (*t*, 3H), 1.32 (*br*, 6H), 1.62 (*m*, 2H), 2.61 (*t*, 2H), 7.41 (*d*, 2H), 7,54 (*t*, 1H). ¹³C-NMR (75 MHz, CDCl₃) δ 14.0, 22.6, 28.8, 30.9, 31.6, 35.4, 62.8 (*q*, *d*_q = 3.3), 64.7 (*t*, *J*_t = 3.1), 65.6 (*t*, *J*_t = 3.3), 73.5, 83.4, 84.3 (*m*), 99.2 (*t*, *m J*_t = 18.9), 99.8 (*t*, *m J*_t = 18.0), ²⁶⁵ 121.4, 133.7, 133.9, 137.3 (*d*, *m J*_d = 251.8), 144.1, 152.3 (*d*, *m J*_d = 260.9), 160.0 (*d*, *m J*_d = 259.6). MALDI-ToF-MS *m*/*z* 759.5 [M+H]⁺ calcd. for C₃₆H₁₆Br₂F₈ (757.95).

was charged with 4 (0.8 g, 2.2 mMol), $Pd_2(dba)_3$ CHCl₃ (0.02 g, 0.019 mMol) and CuI (0.02 g, 0.1 mMol) in dry toluene (20 mL)

and dry diisopropylethylamine (1 mL). The solution was ²⁸⁵ degassed by bubbling with N₂. A solution of **13** (0.2 g, 0.33 mMol) in dry toluene (2 mL) was added dropwise and the reaction mixture was stirred for 3 h at RT under N₂. Removal of the solvents under reduced pressure and CC (silica, hexane) afforded **15** (0.2 g, 0.17 mMol, 53%) as a brown solid. ¹H-NMR ²⁹⁰ (250 MHz, CDCl₃) δ 0.92 (*t*, 6H), 1.32 (*br*, 12H), 1.65 (*m*, 4H), 2.62 (*t*, 4H), 7.42 (*s*, 4H), 7.55 (*d*, 2H). ¹³C-NMR (75 MHz, CDCl₃) δ 14.0, 22.6, 29.0, 31.0, 31.6, 35.4, 62.8, 64.7, 65.6, 73.5, 83.4, 83.6, 84.3 (*m*), 84.5 (*m*), 99.2 (*m*), 99.5 (*m*), 100.0 (*m*),121.4, 133.7, 134.0, 137.3 (*d*,*m* J_d = 250.6) 137.5 (*d*,*m* J_d = 295 252.0), 144.1, 152.3 (*d*,*m* J_d = 260.4), 152.7 (*d*,*m* J_d = 261.9) 160.0 (*d*,*m* J_d = 259.6), 160.3 (*d*,*m* J_d = 259.7). APCI-MS *m*/z 1164.0 [M⁺]. Anal. calcd. for C₆₂H₃₂Br₂F₁₂ (1164.7): C 63.94, H 2.77; found: C 64.32, H 2.90.

300 7,8,9,25,26,27,43,44,45,56,58,60-Dodecafluoro-17,35,53-

trihexyl-heptacyclo [41.3.1. 1 6,10. 1 15,19. 1 24,28. 1 33,37. 1 42,46] hexatriaconta-1(55), 6, 8, 10(56), 15, 17, 19(57), 24, 26, 28(58), 33, 35, 37(59), 42, 44, 46(60), 51, 53-octadecaene-2, 4, 11, 13, 20, 22, 29, 31, 38, 40, 47, 49-dodecayne (1):

Macrocycle 1 from 15 and 9:

A stirred solution of Pd₂(dba)₃·CHCl₃ (0.04 g, 0.04 mMol) and CuI (0.02 g, 0.1 mMol) in dry toluene (450 mL) and dry diisopropylethylamine (5 mL) was degassed by bubbling with N₂. 310 Within 10 h a solution of 15 (0.140 g, 0.12 mMol) and 9 (0.025 g, 0.12 mMol) in dry toluene (400 mL) was added dropwise under a N2 atmosphere. After stirring for 4 days the solvents were removed under reduced pressure. The residue was dissolved in toluene (15 mL), filtered and purified by size exclusion 315 chromatography (SEC, Bio-Beads® S-X1, toluene) to provide 1 (9.6 mg, 7.9·10⁻⁶ Mol, 6.6%) as brown solid. ¹H-NMR (250 MHz, CDCl₃) § 0.91 (t, 9H), 1.28 (br, 24H), 2.21 (br, 6H), 6.67 (br, 6H), 7.08 (br, 3H). ¹³C-NMR (125 MHz, d₈-Toluene, 50 °C) δ 13.8, 22.5, 29.1, 30.4, 31.6, 34.9, 66.1, 74.6, 81.4, 84.5, 100.0 $_{320}$ (*m*), 121.9, 132.3, 134.1, 136.5 (*d*, *m* J_d = 255), 143.6, 152.0 (*d*, *m*) $J_d = 255$), 160.5 (d, $J_d = 255$). APCI-MS m/z 1212.2 [M⁺-H]. Anal. calcd. for C₇₈H₄₈F₁₂ (1213.2): C 77.22, H 3.99; found: C 76.95, H 4.12.

325 Macrocycle 1 from 13 and 14:

A stirred solution of Pd₂(dba)₃·CHCl₃ (0.03 g, 0.03 mMol) and CuI (0.015 g, 0.078 mMol) in dry toluene (700 mL) and dry diisopropylethylamine (3 mL) was degassed by bubbling with N₂. Within 10 h a solution of **13** (61.4 mg, 0.10 mMol) and **14** (75 ³³⁰ mg, 0.10 mMol) in dry toluene (120 mL) was added dropwise under a N₂ atmosphere. After stirring for 4 days the solvents were removed under reduced pressure. The residue was dissolved in toluene (15 mL), filtered and purified by SEC (Bio-Beads® S-X1, toluene) and CC (silica, toluene) to provide **1** (5.1 mg, 4.2·10⁻ ³³⁵ ⁶ Mol, 4.2%) as brown solid.

Macrocycle 1 from 4 and 9:

A stirred solution of Pd₂(dba)₃·CHCl₃ (0.21 g, 0.2 mMol) and CuI (0.1 g, 0.5 mMol) in dry toluene (1300 mL) and dry ³⁴⁰ diisopropylethylamine (5 mL) was degassed by bubbling with N₂. Within 10 h a solution of **4** (0.712 g, 2 mMol) and **9** (0.42 g, 2 mMol) in dry toluene (500 mL) was added dropwise under a N₂ atmosphere. After stirring for 4 days the solvents were removed under reduced pressure. The residue was dissolved in toluene (15 mL), filtered and purified by size exclusion chromatography (SEC, Bio-Beads® S-X1, toluene) and CC (silica, toluene) to provide **1** (1.2 mg, 1·10⁻⁶ Mol, 0.15%) as brown solid.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

Concentration- and temperature dependent ¹H-NMR investigations

$$\delta = \delta_{\rm m} + (\delta_{\rm d} - \delta_{\rm m}) \left[1 + \{ (1 - (8 \cdot K_2 \cdot \text{Conc} + 1)^{\frac{1}{2}} / (4 \cdot K_2 \cdot \text{Conc}) \} \right]$$

Temp (°C) 4		0 3		0 2		20) 1() 0	
Conc. ^a	H _{endo}	H _{exo}	H _{endo}	H _{exo}	H _{endo}	H _{exo}	H _{endo}	H _{exo}	H _{endo}	H _{exo}
11,062	7,208	6,815	7,149	6,741	7,099	6,681	7,057	6,631	7,023	6,594
10,257	7,215	6,829	7,156	6,753	7,106	6,69	7,06	6,636	7,024	6,596
9,4681	7,221	6,837	7,163	6,761	7,108	6,693	7,064	6,64	7,028	6,598
8,7936	7,226	6,845	7,169	6,77	7,112	6,699	7,069	6,646	7,03	6,602
7,8944	7,241	6,853	7,178	6,782	7,119	6,708	7,073	6,651	7,032	6,605
6,8039	7,259	6,878	7,191	6,8	7,129	6,72	7,083	6,662	7,04	6,612
6,0767	7,273	6,902	7,207	6,817	7,139	6,733	7,087	6,669	7,046	6,618
4,9521	7,301	6,932	7,225	6,843	7,153	6,751	7,101	6,687	7,055	6,628
4,163	7,32	6,963	7,244	6,869	7,169	6,772	7,11	6,703	7,062	6,643
3,6155	7,341	6,984	7,264	6,893	7,181	6,789	7,121	6,713	7,069	6,65
2,9563	7,367	7,037	7,285	6,925	7,203	6,817	7,14	6,735	7,082	6,67
2,3963	7,403	7,092	7,319	6,97	7,225	6,847	7,153	6,755	7,097	6,686
1,8382	7,445	7,143	7,363	7,029	7,256	6,89	7,181	6,788	7,118	6,711
1,342	7,498	7,22	7,405	7,094	7,3	6,948	7,211	6,832	7,14	6,735
0,9125	7,535	7,266	7,463	7,172	7,342	7,007	7,254	6,877	7,173	6,783
0,6232	7,572	7,327	7,514	7,242	7,398	7,081	7,302	6,95	7,217	6,833
$\delta_m^{\ \ b}$	7,744 ±0,020	7,600 ±0,046	7,835 ±0,031	7,737 ±0,054	7,849 ±0,053	7,762 ±0,089	7,896 ±0,065	7,829 ±0,156	8,072 ±0,211	7,856 ±0,320
$\delta_d^{\ c}$	6,918	6,435	6,948	6,479	6,964	6,506	6,961	6,51	6,952	6,504
K_2^{d}	$\pm 0,030$ 251 ± 35.3	$\pm 0,071$ 303 ± 64	$\pm 0,054$ 692 ± 92	±0,098 829 +130	$\pm 0,10$ 1695 ± 309	$\pm 0,171$ 2054 ± 426	0,127 3813 +697	$\pm 0,308$ 4881 +1480	$\pm 0,419$ 11050 ± 4908	$\pm 0,630$ 10268 ± 5767
$K_{\text{Dim.}}^{e}$	277 ±90		760 ± 199		1875 ± 605		4346 ±2014		10655 ±6158	

^{a)}Total concentration of the macrocycle **1** (in mM). ^{b)}calculated chemical shift for the protons of the monomer. ^{c)}calculated chemical shift of the protons of the dimer. ^{d)}calculated dimerization constant (in M^{-1}). ^{e)}Average association constant of both protons at given temperature (in M^{-1}).

360

³⁵⁰ **Table**. Chemical shifts of the exo-annular and the endo-annular protons of the macrocycle **1** at different concentrations and temperatures. Chemical shifts for the monomer (δ_m) and the dimer (δ_d) as well as the dimerization constants (K_2) at different temperatures were obtained by fitting the data to the equation² ³⁵⁵ below using the Origin® software from MicrocalTM.

Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2006

van't Hoff plot of the temperature dependent K_{Dim} values obtained from the ¹H-NMR analysis

Fig. van't Hoff plot of the dimerization of the macrocycle 1 in \mbox{CDCl}_3 .

The slope B is equal to $-\Delta H/R$ and the axis intercept A is equal to $\Delta S/R$.

With $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$:

395

 $\Delta H = -B \times R = 7708 \times 8.314/1000 = -64.08 \pm 2.6 \text{ kJ} \cdot \text{mol}^{-1}$

 $\Delta S = A \times R = -18.8 \times 8.314 = -156.3 \pm 8.90 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

400 And at 20°C:

 $\Delta G_{293 \text{ K}} = \Delta H - T\Delta S$ = - 64.08 - 293 (-156.3)/1000 = -18.3 ± 5.2 kJ·mol⁻¹

405 **References**

- 1 M. Mayor, J.-M. Lehn, J. Am. Chem. Soc., 1997, 121, 11231.
- a) I. Horman, B. Dreux, *Helv. Chim. Acta*, 1984, **67**, 754; b) Y. Tobe,
 N. Utsumi, K. Kawabata, A. Nagano, K. Adachi, S. Araki, M. Sonoda, K. Hirose, K. Naemura, *J. Am. Chem. Soc.*, 2002, **124**, 5350.

410