Formazans as β-diketiminate analogues. First structural characterization of main group formazan complexes towards boraverdazyl radicals.

Joe B. Gilroy,^{*a*} Michael J. Ferguson,^{*b*} Robert McDonald,^{*b*} Brian O. Patrick,^{*c*} and Robin G. Hicks^{**a*}

^a Department of Chemistry, University of Victoria, PO Box 3065, Victoria, BC, Canada, V8W 3V6. E-mail: rhicks@uvic.ca
^b Crystallography Laboratory, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2
^c Crystallography Laboratory, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1

SUPPORTING INFORMATION

CONTENTS

Experimental Details	S2
¹ H, ¹³ C, and ¹¹ B NMR Spectra	S5
CV Data	S10
EPR Spectra	S12
Diffuse Reflectance Spectra	S13
UV-Vis Spectra	S14

1,5-diphenvl-3-p-tolylformazan (3a). Phenylhydrazine (9.82 mL, 100 mmol) was combined with p-tolualdehyde (11.8 mL, 100 mmol) and ethanol (100 mL) before the mixture was allowed to stir for 30 min at which time a yellow precipitate had formed. The reaction mixture was treated with sodium carbonate hydrate (40 g, 323 mmol), tetrabutylammonium bromide (3.0 g, 9 mmol), water (300 mL), and dichloromethane (300 mL) before being stirred at 0°C for 1 h. A solution of diazonium salt made from stirring aniline (9.2 mL, 100 mmol), sodium nitrite (7.5 g, 109 mmol), water (25 mL), and hydrochloric acid (25 mL) for 30 min at 0°C was then added dropwise. Upon addition, the organic phase in the biphasic reaction mixture turned blood red. After stirring for 2 h at RT the organic layer was collected, washed with water (4 x 250 mL) and taken to dryness in vacuo. Column chromatography (neutral alumina, dichloromethane) followed by trituration of the resulting solid with methanol afforded 3a as a dark purple microcrystalline solid, yield 15.0 g (47.8 %). Mp. 154-156°C. ¹H NMR (CD_2Cl_2) : δ 15.24 (s, 1H), 8.03 (d, 2H, ³J = 8 Hz), 7.72 (d, 4H, ³J = 8 Hz), 7.49 (t, 4H, ³J = 8 Hz), 7.33-7.27 (m, 4H), 2.42 (s, 3H) ppm. ¹³C NMR (CD₂Cl₂): δ 148.6, 141.9, 138.2, 135.1, 130.0, 129.7, 128.0, 126.3, 119.2, 21.5 ppm. FT-IR (KBr): 1597 (s), 1511 (s), 1497 (s), 1453 (s), 1353 (m), 1232 (s), 1035 (s), 1014 (s), 821 (s), 502 (m) cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} 274 nm (ϵ = 20000), 301 nm (ϵ = 26250), 491 nm (ϵ = 15000). MS (LSIMS): m/z 315 {M+1⁺, 75 %}. Anal. Calcld for C₂₀H₁₈N₄: C, 76.40; H, 5.77; N, 17.82. Found: C, 76.71; H, 5.64; N, 17.97.

1,5-di-p-tolyl-3-phenylformazan (3b). p-tolylhydrazine hydrochloride (12.50 g, 79 mmol) was combined with triethylamine (20.0 mL, 143 mmol) and ethanol (50 mL). After 30 min of stirring, benzaldehyde (8.1 mL, 79 mmol) was added and the mixture was allowed to stir for an additional 2 h at which time a yellow precipitate had formed. The reaction mixture was treated with sodium carbonate hydrate (33.2 g, 268 mmol), tetrabutylammonium bromide (2.5 g, 8 mmol), water (250 mL), and dichloromethane (250 mL) before being stirred at 0°C for 1 h. A solution of diazonium salt made from stirring p-toluidine (8.50 g, 79 mmol), sodium nitrite (6.3 g, 91 mmol), water (25 mL), and hydrochloric acid (21 mL) for 30 min at 0°C was then added dropwise. Upon addition, the organic phase in the biphasic reaction mixture turned blood red. After stirring for 2 h at RT the organic layer was collected, washed with water (5 x 100 mL) and taken to dryness in vacuo. Column chromatography (neutral alumina, dichloromethane) followed by trituration of the solid with methanol afforded **3b** as a dark purple microcrystalline solid, yield 10.1 g (30.8 %). Mp. 140-142°C. ¹H NMR (CD_2Cl_2) : δ 15.46 (s, 1H), 8.14 (d, 2H, ³J = 8 Hz), 7.62 (d, 4H, ³J = 8 Hz), 7.45 (t, 2H, ³J = 8 Hz), 7.36 (t, 1H, ${}^{3}J = 8$ Hz), 7.29 (d, 4H, ${}^{3}J = 8$ Hz), 2.41 (s, 6H) ppm. ${}^{13}C$ NMR (CD₂Cl₂): δ 146.4, 141.3, 138.4, 138.2, 130.9, 130.6, 130.0, 128.9, 128.0, 126.2, 119.2, 119.0, 108.2, 21.5 ppm. FT-IR (KBr): 1596 (s), 1515 (s), 1495 (s), 1240 (s), 1044 (s), 767 (s) cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} 278 nm (ϵ = 17500), 308 nm (ϵ = 23500), 493 (ϵ = 16250). MS (LSIMS): *m/z* 329 {MH⁺, 100 %}. Anal. Calcid for C₂₁H₂₀N₄: C, 76.80; H, 6.14; N, 17.06. Found: C, 76.97; H, 6.12; N, 16.69.

1,1-diacetate-2,6-diphenyl-3-p-tolylboratetrazine (4a). Boric acid (0.8 g, 13 mmol) was combined with acetic acid (3.5 mL) and acetic anhydride (3.5 mL) and stirred at 80°C for 15 minutes until dissolution was observed. **3a** (1.0 g, 3.2 mmol) was then added as a solution in acetic acid (2.1 mL) and acetic anhydride (7.5 mL). The mixture was left to stir at 80°C for 16 h at which time the mixture was extracted with hexanes (5 x 100 mL). The hexanes was combined and washed with water (5 x 100 mL), dried with anhydrous magnesium sulfate and concentrated in vacuo. Compound **4a** was isolated as a dark purple solid, yield 0.420 g (29.7 %). X-Ray quality crystals were grown via slow evaporation of concentrated hexanes solutions of **4a**. Mp. 178-180°C. ¹H NMR (CD₂Cl₂): δ 8.01 (d, 2H, ³J = 8 Hz), 7.95 (d of d, 4H, ³J = 8 Hz), 7.48 (m, 6H), 7.32 (d, 2H, ³J = 8 Hz), 2.43 (s, 3H), 1.82 (s, 6H) ppm. ¹³C NMR (CD₂Cl₂): δ 1.71.7, 145.3, 139.4, 138.8, 132.3, 130.0, 129.9, 129.5, 125.6, 123.4, 22.7, 21.6 ppm. 11B NMR (CD₂Cl₂): δ 1.32 ppm. FT-IR (KBr): 1724 (s), 1715 (s), 1305 (s), 1250 (s), 1054 (s), 966 (s), 764 (s), 688 (s), 506 (m) cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} 256 nm (ε = 20000), 311 nm (ε = 11500), 558 (ε = 6500). MS (EI): *m/z* 442 {MH⁺, 65 %}. Anal. Calcld for C₂₄H₂₃N₄O₄B: C, 65.18; H, 5.24; N, 12.67. Found: C, 65.31; H, 5.56; N, 12.46.

1.1-diacetate-2.6-di-p-tolyl-3-phenylboratetrazine (4b). Boric acid (1.6 g. 26 mmol) was combined with acetic acid (7.0 mL) and acetic anhydride (7.0 mL) and stirred at 80°C for 15 minutes until dissolution was observed. 3b (2.1 g, 6.4 mmol) was then added as a solution in acetic acid (4.2 mL) and acetic anhydride (15.1 mL). The mixture was left to stir at 80°C for 16 h at which time the mixture was extracted with hexanes (5 x 200 mL). The hexanes was combined and washed with water (5 x 200 mL), dried with anhydrous magnesium sulfate and concentrated in vacuo. Compound 4b was isolated as a dark purple solid, yield 0.826 g (28.1 %). X-Ray quality crystals were grown via slow evaporation of concentrated hexanes solutions of **4b**. Mp. 170-172°C. ¹H NMR (CD_2Cl_2) : 8.11 (d, 2H, ³J = 8 Hz), 7.85 (d, 4H, ³J = 8 Hz), 7.51-7.42 (m, 3H), 7.27 (d, 4H, 3 J = 8 Hz), 2.42 (s, 6H), 1.82 (s, 6H) ppm. 13 C NMR (CD₂Cl₂): δ 171.7, 143.1, 140.6, 135.3, 130.2, 129.2, 129.1, 125.6, 123.2, 22.7, 21.6 ppm. ¹¹B NMR (CD₂Cl₂): δ 1.31 ppm. FT-IR (KBr): 1717 (s), 1602 (m), 1371 (s), 1303 (s), 1251 (s), 1176 (m), 1042 (s), 971 (s), 817 (s), 504 (s) cm⁻¹. UV-Vis (CH₂Cl₂): λ_{max} 260 nm ($\epsilon = 15750$), 320 nm ($\epsilon =$ 14250), 560 (ϵ = 19750). MS (EI): m/z 456 {MH⁺, 100 %}. Anal. Calcld for C₂₅H₂₅N₄O₄B: C, 65.80; H, 5.52; N, 12.28. Found: C, 65.41; H, 5.66; N, 11.87.

1,1-diacetate-2,6-diphenyl-3-p-tolylboratetrazinyl radical anion (5a). Compound **4a** (0.085 g, 0.2 mmol) was dissolved in hexanes (50 mL) and stirred for 30 min at which time cobaltacene (0.039 mg, 0.2 mmol) in hexanes (50 mL) was added via cannula. Upon addition a green precipitate formed and after 10 min of stirring the mixture was filtered *in vacuo*, washed with hexanes (2 x 50 mL) and dried *in vacuo* for 1 hour. Compound **5a** was isolated as a dark green solid and was handled in the glovebox when possible, yield 0.040 g (31.6 %). Mp. 96-98°C (dec). FT-IR (KBr): 1707 (s), 1690 (s), 1587 (s), 1485 (s), 1267 (s), 1172 (m), 1104 (m), 1014 (m), 755 (m), 692 (m) cm⁻¹. Anal. Calcld for $C_{34}H_{33}N_4O_4BCo$: C, 64.68; H, 5.27; N, 8.87. Found: C, 64.51; H, 5.23; N, 8.24.

1,1-diacetate-2,6-di-p-tolyl-3-phenylboratetrazinyl radical anion (5b). Compound **4b** (0.085 g, 0.2 mmol) was dissolved in hexanes (75 mL) and stirred for 30 min at which time cobaltacene (0.039 g, 0.2 mmol) in hexanes (50 mL)was added via cannula. Upon addition a green precipitate formed and after 1 h of stirring the mixture was filtered *in vacuo*, washed with hexanes (2 x 50 mL) and dried *in vacuo* for 1 hour. Compound **5b** was isolated as a dark green solid and was handled in the glovebox when possible, yield 0.050 g (38.8 %). Mp. 100-102°C (dec). FT-IR (KBr): 1707 (s), 1690 (s), 1606 (m), 1505 (s), 1414 (m), 1367 (m), 1279 (m), 1172 (m), 823 (s), 698 (m), 646 (m) cm⁻¹. Anal. Calcld for $C_{35}H_{35}N_4O_4BCo$: C, 65.13; H, 5.47; N, 8.68. Found: C, 64.28; H, 5.67; N, 8.08.

Figure S2. ¹³C NMR (CD₂Cl₂) spectrum of **3a**

Figure S6. ¹³C NMR (CD₂Cl₂) spectrum of 4a

Figure S8. ¹H NMR (CD₂Cl₂) spectrum of 4b

Figure S10. ¹¹B NMR (CD₂Cl₂) spectrum of 4b

Figure S11. Cyclic voltammogram of **4b** in CH₃CN. Scan rate 100 mv/S, Bu4NBF4 electrolyte.

Figure S14. EPR Spectrum of 5a (solid state), g = 2.0005

Figure S15. EPR Spectrum of 5b (solid state), g = 1.9999

Figure S16. Diffuse Reflectance Spectra of 2b, 3b, and 5b (1.1% in BaSO₄)